Axions beyond the QCD axion

Stefania Gori UC Santa Cruz

The International Joint Workshop on the Standard Model and Beyond 2024/3rd Gordon Godfrey Workshop on Astroparticle Physics UNSW, December 11, 2024

The QCD axion. Present and future

Strong CP problem: why is the QCD $\overline{\theta}$ parameter so small? $\mathcal{L}_{QCD} \supset \theta \frac{g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD axion: elegant way to address this problem. Dynamical solution to achieve: $\overline{\theta} \leq 10^{-10}$ in agreement with neutron EDM constraints

The QCD axion mass is set by its decay constant, $f_a: m_a f_a \sim f_{\pi} m_{\pi}$ The generic expectation is that it couples ~1/ f_a Peccei-Quinn symmetry breaking scale

The QCD axion. Present and future

Strong CP problem: why is the QCD $\overline{\theta}$ parameter so small? $\mathcal{L}_{QCD} \supset \theta \frac{g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD axion: elegant way to address this problem. Dynamical solution to achieve: $\overline{\theta} \leq 10^{-10}$ in agreement with neutron EDM constraints

The QCD axion mass is set by its decay constant, $f_a: m_a f_a \sim f_{\pi} m_{\pi}$ The generic expectation is that it couples ~1/f_a Peccei-Quinn symmetric expectation is the percei-Quinn symmetric e

Adams at al., 2203.14923

Peccei-Quinn symmetry breaking scale

 $f_a \gtrsim \mathcal{O}(10^{11} \mathrm{GeV})$ the QCD axion can easily be DM. It is more difficult if $\mathcal{O}(10^8 \mathrm{GeV}) \lesssim f_a \lesssim O(10^{11} \mathrm{GeV})$ (1)

The QCD axion. Present and future

Strong CP problem: why is the QCD $\overline{\theta}$ parameter so small? $\mathcal{L}_{QCD} \supset \theta \frac{g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD axion: elegant way to address this problem. Dynamical solution to achieve: $\overline{\theta} \leq 10^{-10}$ in agreement with neutron EDM constraints

The QCD axion mass is set by its decay constant, $f_a: m_a f_a \sim f_{\pi} m_{\pi}$ The generic expectation is that it couples ~1/f_a Peccei-Quinn symmetric expectation is the percei-Quinn symmetric e

Adams at al., 2203.14923

Peccei-Quinn symmetry breaking scale

 $f_a \gtrsim \mathcal{O}(10^{11} \mathrm{GeV})$ the QCD axion can easily be DM. It is more difficult if $\mathcal{O}(10^8 \mathrm{GeV}) \lesssim f_a \lesssim O(10^{11} \mathrm{GeV})$ (1)

Heavier axions and the strong CP problem

Models where two or more axions naturally cooperate to address the strong CP problem.

(2)

(Recent references: Agrawal, Howe, 1710.04213; Foster, Kumar, Safdi, Soreq, 2208.10504, ...)

Axion quality problem alleviated for heavy axions

if PQ symmetry broken by dimension D operators at $\Lambda_{\rm UV}$: $\delta \bar{\theta} \sim \frac{f_a^{D-2}}{m_a^2 \Lambda_{\rm UV}^D}$

Heavier axions and the strong CP problem

Models where two or more axions naturally cooperate to address the strong CP problem.

(2)

(Recent references: Agrawal, Howe, 1710.04213; Foster, Kumar, Safdi, Soreg, 2208.10504, ...)

 $SU(3) \times SU(3) \rightarrow SU(3)_D = SU(3)_c$

Lot of freedom in the (m_a-f_a) plane. Also different hierarchies in axion-SM couplings.

Axion quality problem alleviated for heavy axions

if PQ symmetry broken by dimension D operators at $\Lambda_{UV:}$

$$\sim \frac{f_a^{D-2}}{m_a^2 \Lambda_{\rm UV}^{D-4}}$$

Agrawal, Howe, 1710.04213

For this talk

Variations of the minimal QCD axion:	
1) The QCD axion as mediator between the SM and DM, χ : $f_a \lesssim \mathcal{O}(10^{11} { m GeV})$	${c_\chi\over 2f_a}\partial_\mu a\; ar\chi\gamma^\mu\gamma_5\chi$
	Chapter 1.
2) Heavier axions and new phenomenology at meson factor	ries
	Chapter 2.

Main references:

- 1. Dror, SG, Munbodh, 2306.03145 (+ with Knapen, Lin, Munbodh, Suter, 2501.xxxx)
- 2. Altmannshofer, Dror, SG, 2209.00665

Chapter 1

The QCD axion as mediator between the SM and DM

Main references I will discuss: Dror, SG, Munbodh, 2306.03145 (+ with Knapen, Lin, Munbodh, Suter, 2501.xxxx)

- * If $f_a \leq \mathcal{O}(10^{11} \text{GeV})$, typically axions do not constitute a sizable fraction of the DM energy density without additional dynamics beyond the misalignment mechanism $(T_{\text{RH}} \leq f_a)$ or the decay of cosmic defects $(T_{\text{RH}} \geq f_a)$
- * Experimental program to detect such low fa axions: upcoming IAXO and ALPS II

Can we still have a connection to DM, even for such lower decay constants?

- * If $f_a \leq \mathcal{O}(10^{11} \text{GeV})$, typically axions do not constitute a sizable fraction of the DM energy density without additional dynamics beyond the misalignment mechanism $(T_{\text{RH}} \leq f_a)$ or the decay of cosmic defects $(T_{\text{RH}} \geq f_a)$
- * Experimental program to detect such low f_a axions: upcoming IAXO and ALPS II

Can we still have a connection to DM, even for such lower decay constants?

A minimal model: let's take the QCD axion (either KSVZ or DFSZ) and let's couple it to a singlet Dirac fermion DM candidate:

$${\cal L} \supset {c_\chi \over 2 f_a} \partial_\mu a ar\chi \gamma^\mu \gamma_5 \chi$$

A small set of free parameters fixes the cosmology of the model: f_a , m_{χ} , $g_{a\chi} \equiv \frac{c_{\chi} m_{\chi}}{f_a}$, $T_{\rm RH}$

(eventually $tan\beta$ in DFSZ)

- * If $f_a \leq \mathcal{O}(10^{11} \text{GeV})$, typically axions do not constitute a sizable fraction of the DM energy density without additional dynamics beyond the misalignment mechanism $(T_{\text{RH}} \leq f_a)$ or the decay of cosmic defects $(T_{\text{RH}} \geq f_a)$
- * Experimental program to detect such low f_a axions: upcoming IAXO and ALPS II

Can we still have a connection to DM, even for such lower decay constants?

A minimal model:

let's take the QCD axion (either KSVZ or DFSZ) and let's couple it to a singlet Dirac fermion DM candidate:

A small set of free parameters fixes the cosmology of the model: f_a , m_{χ} , $g_{a\chi} \equiv \frac{c_{\chi} m_{\chi}}{f_a}$, $T_{\rm RH}$

(eventually $tan\beta$ in DFSZ)

Couplings	KSVZ	DFSZ	
Gluons	$rac{lpha_s}{8\pi f_a}$		
Photons	$-rac{lpha}{8\pi f_a}(1.924)$	$rac{lpha}{8\pi f_a} \left(rac{8}{3} - 1.924 ight)$	
Quarks	Loop suppressed	$\operatorname{up}: \frac{\cos^2\beta}{6f_a}, \operatorname{down}: \frac{\sin^2\beta}{6f_a}$	
Leptons	Loop suppressed	Type I: $\frac{\sin^2\beta}{6f_a}$, Type II: $-\frac{\cos^2\beta}{6f_a}$	

- * If $f_a \leq \mathcal{O}(10^{11} \text{GeV})$, typically axions do not constitute a sizable fraction of the DM energy density without additional dynamics beyond the misalignment mechanism $(T_{\text{RH}} \leq f_a)$ or the decay of cosmic defects $(T_{\text{RH}} \geq f_a)$
- $\boldsymbol{\ast}$ Experimental program to detect such low f_a axions: upcoming IAXO and ALPS II

Can we still have a connection to DM, even for such lower decay constants?

A minimal model:

let's take the QCD axion (either KSVZ or DFSZ) and let's couple it to a singlet Dirac fermion DM candidate:

A small set of free parameters fixes the cosmology of the model: f_a , m_{χ} , $g_{a\chi} \equiv \frac{c_{\chi} m_{\chi}}{f_a}$, $T_{\rm RH}$

Couplings	KSVZ	DFSZ	
Gluons	$rac{lpha_s}{8\pi f_a}$		
Photons	$-rac{lpha}{8\pi f_a}(1.924)$	$rac{lpha}{8\pi f_a}\left(rac{8}{3}-1.924 ight)$	
Quarks	Loop suppressed	$\operatorname{up}: \frac{\cos^2\beta}{6f_a}, \operatorname{down}: \frac{\sin^2\beta}{6f_a}$	
Leptons	Loop suppressed	Type I: $\frac{\sin^2\beta}{6f_a}$, Type II: $-\frac{\cos^2\beta}{6f_a}$	

Bounds from DM self-interaction:

(eventually tanβ in DFSZ)

$$c_\chi rac{m_\chi}{f_a} \equiv g_{a\chi} \lesssim 0.21 \left(rac{m_\chi}{1 \; {
m MeV}}
ight)^{3/4}$$

 $f_a \gtrsim \begin{cases} 3.9 \times 10^8 \text{ GeV} & (\text{KSVZ}) \text{ supernova cooling bounds (axion-nucleon interaction)} \\ 1.2 \times 10^9 \text{ GeV } \sin^2\beta \text{ (DFSZ-I)} \\ 1.2 \times 10^9 \text{ GeV } \cos^2\beta \text{ (DFSZ-II)} \\ 1.2 \times 10^9 \text{ GeV } \cos^2\beta \text{ (DFSZ-II)} \end{cases} \text{ cooling bounds on red giant (axion-electron interaction)} \\ 5 \end{cases}$

- * If $f_a \leq \mathcal{O}(10^{11} \text{GeV})$, typically axions do not constitute a sizable fraction of the DM energy density without additional dynamics beyond the misalignment mechanism $(T_{\text{RH}} \leq f_a)$ or the decay of cosmic defects $(T_{\text{RH}} \geq f_a)$
- $\boldsymbol{\ast}$ Experimental program to detect such low f_a axions: upcoming IAXO and ALPS II

Can we still have a connection to DM, even for such lower decay constants?

 $f_a \gtrsim \begin{cases} 3.9 \times 10^8 \text{ GeV} & (\text{KSVZ}) & \text{supernova cooling bounds (axion-nucleon interaction)} \\ 1.2 \times 10^9 \text{ GeV } \sin^2\beta & (\text{DFSZ-I}) \\ 1.2 \times 10^9 \text{ GeV } \cos^2\beta & (\text{DFSZ-II}) \end{cases} \text{ cooling bounds on red giant (axion-electron interaction)} \\ 5 \end{cases}$

Thermalizations

The thermal history depends on three classes of processes:

Thermalizations

The thermal history depends on three classes of processes:

A bird's-eye view

1) Dark Matter from SM freeze-in

To avoid DM-SM thermalization:
$$(f_{a})^{2}$$

$$T_{
m RH} < T_{\chi
m SM} \simeq 4 imes 10^7 {
m GeV} \left(rac{f_a}{10^9 {
m GeV}}
ight)^2 \left(rac{1}{g_{a\chi}}
ight)^2$$

Simplifying assumption:

$$T_{\rm RH} < T_{a\rm SM} \simeq 2 \times 10^4 {
m GeV} \left(rac{f_a}{10^9 {
m GeV}}
ight)^2$$

such that the axion does not have
a thermal abundance 8

2

1) SM freeze-in: the relic abundance

2), 3) Dark Matter from axion freeze-out or freeze-in

No coupling with the SM is necessary difficult to test experimentally

 $T_{
m RH}\gtrsim T_{\chi{
m SM}}$ secluded freeze-out

2) DM in thermal contact with the SM in the early universe.

$$\frac{\Omega_{\chi}}{\Omega_{\rm DM}} \sim \left(\frac{m_{\chi}}{1 \,{\rm GeV}}\right)^2 \left(\frac{4.4 \times 10^{-2}}{g_{a\chi}}\right)^4 \text{ unnatural regime}$$

$$\chi \longrightarrow a \qquad g_{a\chi} \equiv \frac{c_{\chi} m_{\chi}}{f_a}$$

2), 3) Dark Matter from axion freeze-out or freeze-in

No coupling with the SM is necessary difficult to test experimentally

 $T_{\rm RH} \gtrsim T_{\chi \rm SM}$ secluded freeze-out 2) DM in thermal contact with the SM in the early universe.

 $rac{\Omega_{\chi}}{\Omega_{
m DM}} \sim \left(rac{m_{\chi}}{1{
m GeV}}
ight)^2 \left(rac{4.4 imes 10^{-2}}{g_{a\chi}}
ight)^4 \; rac{{
m unnatural}}{{
m regime}}$

DM annihilates into QCD axions, which remain relativistic today

 \rightarrow

significant source of dark radiation.

Future experiments will be able to completely probe the freeze-out scenario

2), 3) Dark Matter from axion freeze-out or freeze-in

secluded freeze-in

 $T_{a{
m SM}} \lesssim T_{
m RH} \lesssim T_{\chi{
m SM}} ~{
m and}~ T_{
m RH} \gtrsim T_{a\chi}$

3) axion is thermalized in the early universe

Ω_χ	$\begin{pmatrix} g_{a\chi} \end{pmatrix}^4$	natural
$\overline{\Omega_{ m DM}}\sim$	$\left(\overline{3 imes 10^{-6}} ight)$	regime

The QCD axions will contribute to N_{eff} , but now the DM does not have a sizable energy density \longrightarrow the evolution of the dark sector temperature will be different than in the freeze-out case

The freeze-in scenario is pretty hidden, even to future experiments

The model we discussed so far is compelling since it is highly predictive and some scenario can be probed in the future. However, no laboratory-based probes Reason: large f_a that makes the coupling to the SM very small

What if we extend this framework to much heavier axions/axion-like-particles?

The model we discussed so far is compelling since it is highly predictive and some scenario can be probed in the future. However, no laboratory-based probes

Reason: large fa that makes the coupling to the SM very small

What if we extend this framework to much heavier axions/axion-like-particles?

S.Gori

see e.g., Fitzpatrick et al, 2306.03128 for axion-DM cosmological models with heavier axions 11

The model we discussed so far is compelling since it is highly predictive and some scenario can be probed in the future. However, no laboratory-based probes

Reason: large fa that makes the coupling to the SM very small

S.Gori

What if we extend this framework to much heavier axions/axion-like-particles?

see e.g., Fitzpatrick et al, 2306.03128 for axion-DM cosmological models with heavier axions 11

The model we discussed so far is compelling since it is highly predictive and some scenario can be probed in the future. However, no laboratory-based probes Reason: large f_a that makes the coupling to the SM very small

What if we extend this framework to much heavier axions/axion-like-particles?

Spin-dependent scattering with nuclei at direct detection experiments with Knapen, Lin, Munbodh, Suter, 2501.xxxxx

$$\mathcal{H}=-rac{g_{a\chi}g_n}{m_nm_\chi}rac{(ar{q}\cdotar{S}_\chi)(ar{q}\cdotar{S}_n)}{ar{q}^2+m_a^2}e^{iar{q}ar{r}}$$

g_n is the axion coupling to nuclei:

$${\cal L}_{an}=g_n a ar n \gamma^5 n$$

Computing rates for different materials as a function of the threshold energy, while being consistent with flavor constraints and DM self-interaction constraints

$K_L \rightarrow \pi^0 e^+ e^ \Upsilon \rightarrow \gamma a(\mu \mu)$ $dBr/dq^2(B \rightarrow K^*ee)$ 10° $B_* - \bar{B}_*$ mixing $\Upsilon \rightarrow \gamma + inv.$ 10^{3} $K^+ \rightarrow \pi^+ e^+ e^+$ $\hat{\mu}_t$ 10^{2} |c_{GG}|/f [TeV⁻¹] $B \rightarrow K^* a(\mu \mu$ B^+ 10 $\pi^+ \rightarrow a e^+ \nu$ $B \rightarrow K^* \bar{\nu} \nu$ $K_L \rightarrow \pi^0 \bar{\nu} \nu$ $B^+ \rightarrow K^+ a(\mu \mu)$ 10^{-1} $K_L \rightarrow \pi^0 \gamma \gamma$ $K^+ \rightarrow \pi^+ \bar{\nu} \nu$ 10^{-2} 10^{-3} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10 m_a [GeV]

ALPs produced at accelerators

Bauer et al., 2110.10698

Chapter 2

Heavier axions and new phenomenology at meson factories

AXIONS

Main reference I will discuss: Altmannshofer, Dror, SG, 2209.00665

Let's go back to the EFT for axions

At dimension 5, the most general Lagrangian for a spin 0, CP-odd particle with an approximate shift symmetry, $a \rightarrow a+c$:

Fast progressing number of theory studies + experimental searches

B

Let's go back to the EFT for axions

At dimension 5, the most general Lagrangian for a spin 0, CP-odd particle with an approximate shift symmetry, $a \rightarrow a+c$:

This is the **main coupling** that has been considered for phenomenological studies of axions in the sub-GeV scale.

Fast progressing number of theory studies + experimental searches

Let's go back to the EFT for axions

At dimension 5, the most general Lagrangian for a spin 0, CP-odd particle with an approximate shift symmetry, $a \rightarrow a+c$:

A strong CP problem.

A axion-photon coupling is generated in the broken phase $g_{aB} \cos^2 \theta + g_{aW} \sin^2 \theta$

This is the **main coupling** that has been considered for phenomenological studies of axions in the sub-GeV scale.

Fast progressing number of theory studies + experimental searches

studied couplings. Nevertheless they are present and sizable even in the minimal DFSZ QCD axion model.

(indeed the most stringent constraint on the DFSZ axion comes from its coupling to electrons (red giant)) 12

Axion coupling to leptons

 $rac{\left(\partial_{\mu}a
ight)}{m}\left[ar{e}\gamma^{\mu}\left(ar{g}_{ee}+g_{ee}\gamma_{5}
ight)e+g_{
u}ar{
u}\gamma^{\mu}P_{L}
u
ight]$ m_{e}

Altmannshofer, Dror, SG, 2209.00665

Axion coupling to leptons

 $rac{(\partial_{\mu}a)}{[ar{e}\gamma^{\mu}\left(ar{g}_{ee}+g_{ee}\gamma_{5}
ight)e+g_{
u}ar{
u}\gamma^{\mu}P_{L}
u]}$ m_{\star}

Altmannshofer, Dror, SG, 2209.00665

Rate for charged current production

 \neq 0 only if weak SU(2) violation

$$\begin{aligned} \mathrm{BR}(\pi^+ \to e^+ a\nu) &= \frac{1}{384\pi^2} \frac{m_\pi^4}{m_e^2 m_\mu^2} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)^{-2} \left[(g_{ee} - \bar{g}_{ee} + g_\nu)^2 f_0 \left(\frac{m_a^2}{m_\pi^2} \right) \right. \\ &+ \frac{4m_e^2}{m_\pi^2} \left(3(g_{ee})^2 f_3 \left(\frac{m_a^2}{m_\pi^2} \right) + 3(\bar{g}_{ee} - g_\nu)^2 f_4 \left(\frac{m_a^2}{m_\pi^2} \right) \right. \\ &+ 2g_{ee}(\bar{g}_{ee} - g_\nu) f_5 \left(\frac{m_a^2}{m_\pi^2} \right) \right) + \mathcal{O}\left(\frac{m_e^3}{m_\pi^3} \right) \right] \end{aligned}$$

Helicity suppression is lifted only in the case of weak SU(2) violation

Weak violating models

Similar results for $K^+ \to a e^+ \nu$, $D_s^+ \to a e^+ \nu$, $B^+ \to a e^+ \nu$

The past search for $\pi^+ ightarrow e^+ u(a ightarrow e^+ e^-)$

In the late '80s, the SINDRUM experiment at PSI:

Almost background free search

Eichler et al. Physics Letters B 175 (1986), no. 1 101–104

The past search for $\pi^+ ightarrow e^+ u(a ightarrow e^+ e^-)$

In the late '80s,

the SINDRUM experiment at PSI:

 $f_a \sim m_e/g_{ee}$

 m_a [MeV]

The past search for $\pi^+ ightarrow e^+ u(a ightarrow e^+ e^-)$

In the late '80s,

the SINDRUM experiment at PSI:

Almost background free search

 $f_a \sim m_e/q_{ee}$

 m_a [MeV]

S.Gori

Other <u>charged current</u> decays **Kaon decays** $K^+ \rightarrow e^+ v a$ 10^{-3} $\frac{\mathrm{BR}(K^+ \to e^+ \nu a)}{10^{-10}} \simeq \begin{cases} \left(\frac{g_{ee}}{3.3 \cdot 10^{-7}}\right)^2 & \text{weak} \\ \left(\frac{g_{ee}}{7.9 \cdot 10^{-5}}\right)^2 & \text{weak} \\ & \text{preserving} \end{cases}$ BABAR 8ee $BR = 10^{-10}$ 10^{-4} Konaka et a No dedicated hep-ex/0204006, E865 at BNL: weak 10^{-5} BR measured for $m_{ee} > 150 \text{ MeV}$ search preserving 10 m_a [MeV] W boson decays 10^{-3} 2)e BABAR $\frac{\mathrm{BR}(W^+ \to \ell^+ \nu_\ell a)}{\mathrm{BR}(W^+ \to e^+ \nu)} = \frac{3}{1024\pi^2} \frac{m_W^2}{m_\ell^2} \left(g_{\ell\ell} - \bar{g}_{\ell\ell} + g_{\nu_\ell}\right)^2$ 10^{-4} Konaka Riordan et al 10^{-5} $\implies \text{BR}(W^+ \to e^+ \nu_e a) \simeq \left(\frac{g_{ee}}{10^{-3}}\right)^2 \quad \begin{array}{c} \text{(only for} \\ \text{weak} \\ \text{violating)} \end{array}$ 8ee $Br_W = 10^{\circ}$ $\pi^+ \rightarrow e^+ va$ 10^{-6} 10^{-7} No dedicated search E137 weak We impose: 10^{-8} SN - 1987A violating the new width < exp uncertainty on W width 10 100 m_a [MeV]

Neutral current meson decays are also generated at the 2 or 3-loop level (suppressed by CKM elements as well)

reinterpreting past data (not dedicated searches)

What about the future? Advances in meson factories

A big jump in luminosity is expected in the coming years

Past/Present

Future

<u>PIENU experiment</u> at TRIUMF: Pion-~10¹¹ pi+ factories

PIONEER experiment at PSI

(phase 1 approved. Data in ~2028(?)): ~10¹² pi+

E949 at BNL: ~10¹² K⁺ Kaon-E391 at KEK: ~10¹² K factories

NA62 at CERN: ~10¹³ K⁺ KOTO at JPARC: ~10¹⁴ KL

LHCb: more than $\sim 5^{*}10^{12}$ b quarks produced so far; **<u>Belle</u>** (running until 2010): factories ~10⁹ BB-pairs were produced. LHCb: ~30 times more b quarks will be produced by the end of the LHC; **Belle-II:** ~50 times more BB-pairs will be produced.

R-

What about the future? Advances in meson factories

A big jump in luminosity is expected in the coming years

Past/Present

Pionfactories **<u>PIENU experiment</u>** at TRIUMF: ~10¹¹ pi+

Kaonfactories E949 at BNL: ~10¹² K⁺ E391 at KEK: ~10¹² KL

Bfactories

, HC,

LHCb: more than $\sim 5^{*}10^{12}$ b quarks produced so far; **Belle** (running until 2010): ~10⁹ BB-pairs were produced.

Future

PIONEER experiment at PSI (phase 1 approved. Data in ~2028(?)): ~10¹² pi+

Proton fixed target: 1018; 1020 pi+

NA62 at CERN: ~10¹³ K⁺

KOTO at JPARC: ~10¹⁴ K

Proton fixed target: 10^{17} ; 10^{20} K⁺, K_L

LHCb: ~30 times more b quarks will be produced by the end of the LHC; **Belle-II:** ~50 times more BB-pairs will be produced.

Proton fixed target: 10⁸; 10¹³ B

colliders future **Proton fixed target** experiments also produce a huge statistics of mesons.

E.g., DarkQuest (120 GeV protons, 2*10¹⁸ POT); SHiP (400 GeV protons, 2*10²⁰ POT) S.Gori

Future axion searches

PIONEER is BR($\pi^+ \rightarrow e^+\nu(a \rightarrow e^+e^-)$) = 10⁻¹¹ reachable? what about displaced axions?

NA62 is BR($K^+ \rightarrow e^+\nu(a \rightarrow e^+e^-)$) = 10⁻¹⁰ reachable? what about displaced axions?

Belle-II (*) what about
$$B^+ \to e^+\nu(a \to e^+e^-)$$
?

LHC is BR($W^+ \rightarrow e^+ \nu (a \rightarrow e^+ e^-)$) = 10⁻⁵ reachable? (*)

DarkQuest
& SHiPSearches for a displaced axion
decaying to e+e- (*)

Conclusions & Outlook

Axions are very well motivated particles beyond the Standard Model. Large experimental effort to search for the minimal QCD axion.

Axions can

- be a Dark Matter candidate or
- mediate interactions between the Dark Matter and the SM. Several cosmological models and tests with astrophysical and cosmological data

Heavier axions can still address the strong CP problem and lead to new interesting phenomenology for meson factories, LHC, and beam dump experiments.

How to search for these axion interactions?

1. <u>Reinterpretation</u>: B- factories direct production (Babar. For <u>prompt</u> axions)

2. Direct production at electron beam dump experiments (For <u>displaced</u> axions)

Most

studied

3. W and meson decays through charged currents (LHC, meson factories, proton beam dump experiments. For prompt and displaced axions). Example: $\pi^+ \rightarrow ae^+\nu$ New 4. Meson decays through neutral currents (meson factories, proton beam dump experiments.

For prompt and displaced axions).

Example: $B \to Ka$

Backup

The most recent experiments

<section-header>

Experiment **approved** in summer '22 for **PSI** (Switzerland).

See the proposal: Altmannshofer et al., 2203.01981

Main physics goals:

most precise measurement of very rare pion decays

$$\pi^+
ightarrow e^+
u \qquad \pi^+
ightarrow \pi^0 e^+
u$$

Details on DarkQuest

	Experiment	Proton energy	РОТ	Dump	Decay volume	
	DarkQuest	$120 { m GeV}$	1018	$5 \mathrm{m}$	10 m	
and a second second	CHARM	$400 { m GeV}$	2.4×10^{18}	480 m	35 m	Past
	LSND	$800 { m MeV}$	10^{22}	30 m	10 m	rasi
372	NA62-dump	$400 {\rm GeV}$	$5 imes 10^{19}$	$100 \mathrm{m}$	250 m	Dranaad
	SHiP	$400 {\rm GeV}$	$2 imes 10^{20}$	30 m	$50 \mathrm{m}$	Proposed
						Backup

Proton beam dump experiments & axions

Past proton beam dump experiments produced unprecedented amounts of mesons. For example, the CHARM experiment collected ~10²⁰ pions

Several studies for axions (or other dark sector particle) production at past proton beam dump experiments: $K \rightarrow \pi a$ or $B \rightarrow K a$

However, charged current production has been neglected ($K^+ \rightarrow a e^+ v, ...$)

Proton beam dump experiments & axions

CHARM

Backup

100

Example of weak violating axions

$$\mathcal{L} \supset -yHLN^c - Me^{ia/f_a}NN^c + h.c.$$

N (with Dirac partner N^c) charged under PQ

After EWSB, sterile neutrinos and SM neutrinos mix and

Charged current heavy meson decays

Lepton-coupled axion lifetime

