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~80 orders of magnitude 



Cosmological/astrophysical Probes (indirect, CMB, 
star cooling, LSST,PTA,gravitational wave, 
lensing,…)


Table Top experiments (nuclear or electron 
scatteribg/absorption) for direct detection


Cavity experiments for axion like particles, Beam 
Dump Experiments, Quantum Sensing (atomic 
physics)


At colliders (including facilities for LLP such as 
FASER II, SHiP,…)


Beyond WIMP,  
so many new ways to probe possible DM, 

But mostly for (ultra)light DM 



Ultralight DM (ULDM)

• Ultralight (wave) DM:  10−22 eV <  𝑚  <  eV

PTA, 
2312.12225

Quantum sensor, 2205.12988

Future atomic-/astro-physics experiments:    𝑚 < 10−10eV



• Axion-like particle (ALP): well-motivated ultralight DM                                             
(protected by shift symmetry)

✦ Misalignment mechanism: axion starts to oscillate when , and behaves as matter 
after then,  

𝐻 ∼ 𝑚𝜂
𝜌𝜂 ∼ 𝑎−3

✦ For ALP DM:   if   𝑓𝜂  > 1014GeV 𝑚𝜂 < 10−10 eV

Initial value in inflationary patch displaced 
from minimum either because of quantum 

fluctuations when m<<H or because 
potential different than at T->0 
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after then,  

𝐻 ∼ 𝑚𝜂
𝜌𝜂 ∼ 𝑎−3

✦ For ALP DM:   if   𝑓𝜂  > 1014GeV 𝑚𝜂 < 10−10 eV

Initial value in inflationary patch displaced 
from minimum either because of quantum 

fluctuations when m<<H or because 
potential different than at T->0 

phenomenological motivation for 
finding a new mechanism to reduce f 

for better experimental sensitivity

Axion from Misalignment Mechanism

ULDMs are very 
interesting, but their 

production is mostly assumed to be 
via misalignment mechanism.  

Any alternative way to 
produce them?
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DM particle production from generic  
inflationary quantum fluctuations 

Gibbons-Hawking temperature 

✦Typical scale of inflationary quantum fluctuation 

✦ Constraint from tensor-to-scalar ratio:  

✦ Relic Abundance for “massless” particles:  

✦ Relic Abundance for “massive” particles:  

Graham et al., 17’ for dark photon

DM mass cannot go below 10-6 eV 
for generic particle production 

from inflationary quantum 
fluctuations. 

Is there a way out?

too small relic abundance! 

If particle can be NR early enough, then 
it is sufficient to comprise all DM even 

without additional enhancement
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Axion from Inflation-Driven QPT

Inflaton couple to  
axion Kinetic term

nonvanishing curvature 
breaks the scale 

invariance of the axion 
power spectrum

(During inflation with PQ symmetry being broken)

Quantum Phase transition 
with κ as the order 

parameter

Sizeable Quantum 
Fluctuation

parametrize as an effective 
curvature 𝜅 in the axion e.o.m.

∝

Each mode grows after exiting horizon:

comoving horizon shrinks during inflation: 

Ismail, SL, Yu. 24’

Quantum phase transition is modulated by 𝜅

At κ ≠ 0 : CFT is broken 

κ > 0 : red spectrum (closed to kmin) dorminates 
=> DM become non-relativistic either: at the end 

of inflation, or soon after the inflation 



Courtesy of J. Terning 

Ising Model
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Critical Ising Model is  
Scale Invariant 

critical exponent
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Axion from Quantum Phase Transition

K(φ) reduce to unity 
at the end of inflation 
(inflation decays away)

K

Abundance of  axion is sufficiently produced through QPT induced by K(φ) 

Ismail, SL, Yu. 24’
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Axion Power Spectrum is Red-tilted                                                                                                             
comoving length 

aNR = k/mη H(aosc) = mη.

comoving Compton 
wavelength
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Axion from Quantum Phase Transition

♦ Energy Density

Integrating over all mode

=

Already Energy Density has the exponential 
enhancement for the magnitude of inflationary 

quantum fluctuations  

But, if this factor is what compensate the smallness 
of ULDM mass, one should worry about 

cosmological constraints such as isocurvature 
bound (since PQ is broken during the inflation). 

So, this exponential enhancement can be sizable, 
but cannot be the whole story for m ≲ 10-11 eV
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The relic abundance today is given by

Axion Relic abundance

=>  Axion becomes NR before structure formation, T ∼ keV 

The axion energy density today is given by

Subteltey: 

For ultralight DM, the large enhancement is mostly 
from this eN  (~1026 for N=60)  

which comes from kinematics: positive κ leads to 
a red tilt => power spectrum is dominated by kmin, 
whose pe is exponentially suppressed by the end 

of inflation 

The other term eN(2ν−3) is constrained by 
isocurvature bound, etc, and cannot be too large

for

ULDM with m ~ 10-22eV 
is easy to achieve!

small mass compensated by 
exponential enhancement 

c.f. for misalignment, TNR ~ T0sc ~      MPLANCK * mη√
________________
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Origin of inflation coupling to axion kinetic term

1) EFT operators

,

The story is basically the same for d=5 operator 
Or higher order operators

Model of exponential form (resumed form) also works
 2004.10743 (for dark photon DM), Nakai et alK

effective Wilson 
coefficient plays the 

role of κ

K′′/K K′/K
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Origin of inflation coupling to axion kinetic term

2) UV completion 

Kinetic coupling is  
determined by  
Kähler potential 

Noncanonical kinetic term can be realized in the supergravity framework 
Ellis et al, 2013, 1984 

Would it fit into a story of 
String Theory Axions?  

-ongoing discussion with 
Liam McAllister

ALP η is identified as the modulus field T coming from orbifold compactifications, for example 
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Origin of inflation coupling to axion kinetic term

3) Radial mode as inflaton 

PQ scalar χ = ρ eiη/fη / 2 naturally leads to a coupling between inflaton ρ and axion kinetic term: 

During inflation, we have ρ ≫ fη and the axion kinetic coupling is significant 

As ρ rolls down along the potential and tends to the vacuum expectation value fη, the inflation ends 
and the axion kinetic term reduces to the canonical form. 

Fairbairn, Hogan, and Marsh ‘15 

ξ should satisfy −1/6 < ξ < 0 
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Theoretical Constraints
♦ Condition that we impose (also need to make sure slow roll potential 

is not spoiled)

Naturalness bound:

Inflation mass get loop corrosion  
from axion coupling of order

axion dynamics should not affect 
inflaton dynamics (single-field 

inflation), 
And also does not change inflation 

potential in order not to spoil slow roll 
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Axion from Quantum Phase Transition

Future haloscopes 
(dashed line):  

DANCE, SRF-m3,  
DMRadio, etc.

CMB-S4 
SKA2

Future CMB, 21cm 
(dashed line):  

♦ via photon coupling

Naturalness: inflation mass correction from axion is small

N = 60 
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Axion from Quantum Phase Transition

Future nuclear clock 
(dashed line): 229Th 

Future CMB, 21cm 
(dashed line):CMB-S4  
SKA2 

CASPEr (brown dashed line) 

♦ via gluon coupling



Axion dark matter QPT by Inflation Misalignment

Production mechanism kinetic coupling  
to inflaton

oscillation due to  
Hubble friction

Production era during inflation much later, when  𝐻 ∼ 𝑚𝜂

Kinematics relativistic when produced 
Non-relativistic much earlier than keV 
(For heavy mass,  NR by the end of 

inflation)

Non-relativistic when produced

Power  
spectrum

red spectrum, peaked at super-
horizon scale

nearly scale-invariant spectrum

Relic abundance insensitive to breaking scale depend on breaking scale 

Parameter space (ALP 
DM)

for m < 10-12 GeV,  
𝑓𝜂 > 1010 GeV  

(can be lowered with N>60) 

for m < 10-12 GeV,  
𝑓𝜂 > 1014 GeV

Parameter space (QCD 
axion DM)

Maximum QCD axion mass of 
order 0.05 eV (can be heavier with N>60)

Maximum QCD axion mass of 
order 10−5 eV 

Summary: Comparison with Misalignment mechanism



Summary

♦

♦

♦

♦

♦

➡



Thank You!
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Theoretical Constraints
♦ Condition that we impose (also need to make sure slow roll potential 

is not spoiled)

Naturalness bound:

Inflation mass get loop corrosion  
from axion coupling of order

axion dynamics should not affect 
inflaton dynamics (single-field 

inflation), 
And also does not change inflation 

potential in order not to spoil slow roll 



Axion from Quantum Phase Transition

♦ When Axion becomes NR

it is easy for the axion to become 
nonrelativistic before structure formation, 

T ∼ keV  
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QCD Axion Relic abundance

Weak dependence 
on the axion mass

Effectively massless at the end of inflation (assuming Treh ≫  ΛQCD), and becomes NR when T ≲ ΛQCD 

mass is induced by nonperturbative QCD effects 

0.05
can be further relaxed with a 

larger number of e-folds 
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For heavier axion satisfying mη > pe 
                                                           => ALP is already NR at the end of inflation 

Energy density today is given by: 

Numerically:
Doesn’t need a large 

enhancement

Axion Relic abundance
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axion dynamics should not affect 
inflaton dynamics (single-field inflation) 

♦ Condition that we impose (also need to make sure slow roll potential 

is not spoiled)
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Theoretical Constraints

♦ Parameter Space correct DM abundance 

DM relic abundance does not depend on 
the breaking scale directly

0.05
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Large quantum fluctuations during inflation is still 
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Domain Wall Constraints
The constraints becomes : 

with

e-folds during the time when kη crosses the horizon 
until the end of inflation, with aη ≡ kη /Hinf 

For   𝜅 ≲ 1 ,  D(𝜅) ≲ 500 𝜅 ≲ 1 is required by small backreation limit

Domain Wall constraint is less strict than the 
isocurvature bound for QCD axion if the backreaction 

constraint is satisfied 
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Experimental Constraints: Isocurvature bound

For our mechanism, deviation from adiabatic mode is:

The resulting bounds from CMB:

With our back reaction constraint  
For single field inflation: 
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Including Future bounds (CMB-S4 and SKA2):

O(1) initial misalignment angle and N = 60 

as long as the backreaction bound is 
satisfied, this enhancement is O(10), 

and isocurvature bounds can be easily 
satisfied.

for 𝜅 < O(1) 

For ALP with very small mass, which need a 
huge enhancement, recall that we have 
additional eN enhancement allows us to 

achieve the right relic abundance



Experimental Constraints: Isocurvature bound

numerical values of exponential enhancement with different 𝜅 :

N = 60 and N − N∗ = 6.1 are fixed

enhancement to  
ultralight DM  

relic abundance

enhancement to 
inflationary 

quantum fluctuation

enhancement to 
axion isocurvature 

perturbation


