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1. Effective Field Theories (EFTs) for New Physics 

2. Geometry of EFTs 

3. Algebraic Renormalization Group Equations formulae      for renormalizable models 

4. RGE from geometry                                                           for EFTs
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ℒUV

4

The EFT approach: achieved developments
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What is known:                       SMEFT with  

• Tree-level matching to the SMEFT  
 for generic NP mediators 

• One-loop RGE in the SMEFT 

• One-loop matching of SMEFT to LEFT 

• One-loop RGE in the LEFT 

Many fitting tools: HEPfit, SMEFiT, EOS, Fitmaker, SFitter… 

and likelihood generators:  

dmax = 6

[de Blas, Criado, Pérez-Victoria, Santiago, 1711.10391] 

[Jenkins, Manohar, Stoffer, 1709.04486]  
[Dekens, Stoffer, 1908.05295]

[Jenkins, Manohar, Stoffer, 1711.05270]

DsixTools 
[Cellis et al., 1704.04504] 
[Fuentes-Martín et al., 2010.16341] 

wilson 
[Aebischer, Kumar, Straub, 1804.05033]

[Allwicher et. al., 
 2207.10756] 

[Aebischer et. al.,  
1810.07698] 

[Jenkins, Manohar, Trott, 1308.2627]  
[Jenkins, Manohar, Trott, 1310.4838]  
[Alonso et al., 1312.2014] 

MatchingTools  
[Criado, 1710.06445]
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What is being developed: 

• One-loop matching to the SMEFT from any UV theory 

• Two-loop RGE      from amplitudes? [Bern, Parra-Martinez, Sawyer, 2005.12917]                   

                                                   from field-space geometry? [Jenkins, Manohar, Naterop, JP, 
                                                                                                              2308.06315 + 2310.19883] 

          from functional methods? [Born, Fuentes-Martín, Kvedaraitė, 
                                                                                                            Thomsen, 2410.07320]  

• Two-loop matching [Fuentes-Martín, Palavrić, Thomsen, 2311.13630] 

• Higher-dimension operators  
‣ matching  

‣ RGE       from field-space geometry?    [Helset, Jenkins, Manohar, 2212.03253; 
                                                                Assi, Helset, Manohar, JP, Shen, 2307.03187]

→
→

→

→

5

The EFT approach: ongoing progress
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ℒSMEFT

This talk

[Fuentes-Martín, König, JP,  
Thomsen, Wilsch, 2211.09144]



Geometry of EFTs



Julie Pagès — UCSD — Renormalization of scalar EFTs from Geometry /327

Field redefinition invariance

Which basis for the EFT? Physics is invariant under field redefinitions. 

S-matrix elements are invariant (from LSZ formula) but correlation functions are not. 

There is an ambiguity in our EFT Lagrangian description which obscure this invariance in intermediate steps  
 different operator basis give the same observables but not always easy to see.  

The goal of (constant) field-space geometry is to write the Lagrangian in such a way that physical quantities such 
as scattering amplitudes are manifestly invariant under field redefinition. 

Example:  

         

 with   

⇒

ℒ ⊃ (ψ̄γμTAψ)(DνFμν)A → g(ψ̄γμTAψ)(ψ̄γμTAψ)

AA
μ → AA

μ − ψ̄γμTAψ
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A scalar field theory can be written as:                   [Alonso, Jenkins, Manohar, 1605.03602] 

 higher-derivative terms 

where 

• field values                =    coordinates on a Riemannian manifold  

•                          =    inner-product on the tangent space  
                 of the field manifold: metric 

   

• potential            =    function on the field manifold 

• field redefinitions      =    coordinate transformations 
(without derivatives) 

ℒEFT =
1
2

gIJ(ϕ) (∂μϕ)I(∂μϕ)J − V(ϕ) +

gIJ(ϕ)

ds2 ≡ gIJ(ϕ) dϕI dϕJ

V(ϕ)

ϕI → φI(ϕ)

8

Geometric interpretation

ϕ1

ϕ2

SM scalar manifold is flat
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Under a coordinate transformation, 
 

• the derivative of the scalar transforms as a vector 

 

• the metric transforms as a tensor 

 

so  is invariant.

ϕI → φI(ϕ)

∂μϕI → ( ∂φI

∂ϕJ ) ∂μϕJ

gIJ → ( ∂ϕK

∂φI ) ( ∂ϕL

∂φJ ) gKL

ℒkin =
1
2

gIJ(ϕ) (∂μϕ)I(∂μϕ)J

9

Scalar geometry

From the metric we can define, 

• Christoffel symbols 

 

• Covariant derivatives 

 

• Riemann curvature tensor 
 

 and  will appear in scattering amplitudes  
making them covariant.

ΓI
JK =

1
2

gIL (gLJ,K + gLK,J − gJK,L)

TJ;I ≡ ∇ITJ =
∂TJ

∂ϕI
− ΓK

IJ TK

RI
JKL = ∂KΓI

JL + ΓI
KNΓN

JL − (K ↔ L)

R ∇

field redefinition in-/covariance    =    coordinate in-/covariance⇒



Algebraic RGE formulae

for renormalizable models



Julie Pagès — UCSD — Renormalization of scalar EFTs from Geometry /3211

RGE from background field method

In MS schemes, renormalization group equations are given by the counterterms required to remove the 
divergences in loop graphs.  

Compute the divergences with the background field method:  

Split the field into background configuration  and quantum fluctuation  where                               
and expand the Lagrangian in  (loops contain only quantum fields). 

To which order in  for one-/two- loop graphs?   topological identity 

for connected graphs                                     and                               

   

No external quantum field: . 

For L=1: only quadratic vertices  , 

For L=2:  2 cubic vertices or 1 quartic vertex + any number of quadratic vertices  . 

̂ϕ η
δℒ[ϕ]

δϕ
ϕ= ̂ϕ

= 0
η

η →

V − I + L = 1 F =
V

∑
i=1

Fi − 2I

⇒ (F − 2) + 2L =
V

∑
i=1

(Fi − 2)

F = 0
→ 𝒪(η2)

→ 𝒪(η4)

# vertices

# internal lines

# loops

Euler character 

# external fields

# fields at each vertex
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One-loop RGE — scalar

Scalar theory at ,  

  

where  is antisymmetric without loss of generality and  is symmetric.  

With the covariant derivative  and redefining  we have 

 

Using naive dimensional analysis, the ’t Hooft formula for one-loop counterterms is   [’t Hooft, Nucl.Phys.B 62 (1973)] 

with  

𝒪(η2) ϕ → ̂ϕ + η

δ2ℒ =
1
2

(∂μη)T(∂μη) + (∂μη)TNμ( ̂ϕ)η +
1
2

ηT X( ̂ϕ)η

Nμ X

Dμη ≡ ∂μη + Nμη X

δ2ℒ =
1
2

(Dμη)T(Dμη) +
1
2

ηT Xη

Yμν = [Dμ, Dν]
ℒ(1)

c.t. =
1

16π2ϵ
Tr [−

1
4

X2 −
1

24
Y2

μν]
Mass dimension:  

 [X] = 2
[Yμν] = 2
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Two-loop RGE — scalar

For two-loop: 

:                                        

:                                        

where  and  are symmetric and the completely symmetric parts of  and  vanish.  

The graphs to compute to derive the two-loop algebraic formula are 

𝒪(η3) δ3ℒ = Aabcηaηbηc + Aμ
a|bc(Dμη)aηbηc + Aμν

ab|c(Dμη)a(Dνη)bηc

𝒪(η4) δ4ℒ = Babcdηaηbηcηd + Bμ
a|bcd(Dμη)aηbηcηd + Bμν

ab|cd(Dμη)a(Dνη)bηcηd

A B Aμ Bμ

with 0, 1 or 2 insertions of  / X Yμν

with 2 or 3 insertions of  / X Yμν

Mass dimension:  
          
        

  

[A] = 1 [B] = 0
[Aμ] = 0 [Bμ] = − 1
[Aμν] = − 1 [Bμν] = − 2
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Structures from NDA and symmetries

A-type counterterms

B-type counterterms

Some graph vanish by symmetry (Lorentz, flavor). 
Compute all the remaining graphs + subtract one-loop subdivergences 
Full computation steps in [Jenkins, Manohar, Naterop, JP, 2308.06315]

Mass dimension:  
          
        

  

[A] = 1 [B] = 0
[Aμ] = 0 [Bμ] = − 1
[Aμν] = − 1 [Bμν] = − 2
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A-type counterterms

50 graphs
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B-type counterterms

Notice: there is not  B-type counterterm    factorizable topology
1
ϵ

→

15 graphs
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Factorizable topology

+ +1 2 1 2

In MS schemes:

 =              +                  +         

     =         +     

Itot [ I1∞

ϵ
+ I1f][ I2∞

ϵ
+ I2f] [ I1∞

ϵ
+ I1f][−

I2∞

ϵ ] [−
I1∞

ϵ ][ I2∞

ϵ
+ I2f]

−
I1∞I2∞

ϵ2
I1f I2f

finite part

divergence

Generalizable to higher-loop graphs, lowest pole =  where  is the number of non-factorizable parts. 

 Only fully non-factorizable graphs contribute to the RGE.

1
ϵnnf

nnf

⇒ *

 There is a subtlety with evanescent operators. Still true, but requires additional finite subtraction beyond MS.  *



RGE from Geometry

for EFTs
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RGE from Geometry

What do we have? 

• Geometric Lagrangians for scalar EFTs with non-trivial metric on field space. 

• Algebraic RGE formulae for renormalizable theories  flat field space. 

Next steps: 

(1) Expand geometric Lagrangians to desired order in quantum fluctuation  use geodesic coordinates. 

(2) Generalize our flat field space formulae to curved field space  use local orthonormal frame. 

(3) Identify our covariant building blocks in the geometric Lagrangian expansions (match). 

  a) at one loop: , ,          + b) at two loop: , , , , ,  

(4) Apply the generalized formulae to obtain covariant RGE results in terms of geometric objects.

↔

→

→

Yμν X A Aμ Aμν B Bμ Bμν
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(1) Expand geometric Lagrangians to desired order in quantum fluctuation  use geodesic coordinates.  
Using cartesian coordinates, we find that Lagrangian expansions are not covariant.  

 Reason:  is a coordinate  and not a tensor… but tangent vectors are: .  

Solution: use Riemann normal / geodesic coordinates (local coordinates obtained by applying the exponential map 
to the tangent space at ) for the quantum fluctuation. 

                                

 expand Lagrangian in

→

↪ ϕ ϕi → ϕ′ i ηi ≡
dϕi

dλ
→ ( ∂ϕ′ i

∂ϕj ) η j

𝒫0

gIJ(𝒫0) = δIJ ΓI
JK(𝒫0) = 0 gIJ(ϕ) = δIJ −

1
3

RIKJL(𝒫0)ϕKϕL + 𝒪(ϕ3)

⇒

20

Geodesic coordinates

 ϕI → ϕI + ηI −
1
2

ΓI
JKηJηK −

1
3!

ΓI
JKLηIηJηK −

1
4!

ΓI
JKLMηIηJηKηM + 𝒪(η5)

𝒫0

𝒫

η

geodesic starting at  
with tangent vector  
ending at  in unit time

𝒫0
η(λ)

𝒫

geodesic equation: 
d2ϕI

dλ2
+ ΓI

JK(ϕ)
dϕJ

dλ
dϕK

dλ
= 0
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Geodesic coordinates

(1) Expand geometric Lagrangians to desired order in quantum fluctuation  use geodesic coordinates.  
The second variation of the scalar geometric Lagrangian 

 

‣ With the shift  

 

with equation of motion   

‣ With the shift  

→

ℒ =
1
2

gIJ(ϕ) (∂μϕ)I(∂μϕ)J − V(ϕ)

ϕI → ϕI + ηI

δ2ℒ =
1
2 [gIJ(𝒟μη)I(𝒟μη)J − RIJKL(Dμϕ)J(Dμϕ)L ηIηK − EJΓJ

KLηKηL − ∇J ∇IV ηIηJ]
δℒ = − (gIJ(𝒟μ(Dμϕ))I + ∇JV

EJ

)ηJ

ϕI → ϕI + ηI −
1
2

ΓI
JKηJηK + 𝒪(η3)

δ2ℒ =
1
2 [gIJ(𝒟μη)I(𝒟μη)J − RIJKL(Dμϕ)J(Dμϕ)L ηIηK − ∇J ∇IV ηIηJ]

non-covariant



Julie Pagès — UCSD — Renormalization of scalar EFTs from Geometry /32

(2) Generalize our flat field space formulae to curved field space  use local orthonormal frame.  

Algebraic counterterm formulae were derived for renormalizable theories  for a flat field-space manifold. 
They do not directly apply on the curved field-space manifold.  

Solution: go to local orthonormal frames using vielbeins and apply formulae there. 

                                              

 Since every indices are contracted, formulae are unchanged apart from uppercase  lowercase indices.

→

⇔

gIJ(ϕ) = ea
I(ϕ)eb

J(ϕ)δab (𝒟μη)I = eI
a(Dμη)a RIJKL = ea

Ieb
Jec

Ked
LRabcd

⇒ ↔

22

Local orthonormal frame
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Local orthonormal frame

(2) Generalize our flat field space formulae to curved field space  use local orthonormal frame. 
For renormalizable theory, indices raised with   

 

                             with  

For the geometric Lagrangian, indices raised with   

                              

→
δab

δ2ℒ =
1
2

(Dμη)T(Dμη) +
1
2

ηT Xη

ℒ(1)
c.t. =

1
16π2ϵ [−

1
4

XabXab −
1

24
Yμν

ab Yab
μν] Yμν = [Dμ, Dν]

gIJ

ℒ(1)
c.t. =

1
16π2ϵ [−

1
4

XIJXIJ −
1

24
Yμν

IJ YIJ
μν]

                    

                 

           

gIJ = eI
aeJ

bδab

(𝒟μη)I = eI
a(Dμη)a

RIJKL = ea
Ieb

Jec
Ked

LRabcd
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One-loop building blocks

(3) Identify our covariant building blocks in the geometric Lagrangian expansions (match). 

  a) at one loop: ,  Yμν X

Linear expansion: 

 

Geodesic expansion: 

 

                            
Match to obtain 
   

 

                       

δ2ℒ =
1
2

(Dμη)T(Dμη) +
1
2

ηT Xη

δ2ℒ =
1
2 [gIJ(𝒟μη)I(𝒟μη)J − RIJKL(Dμϕ)J(Dμϕ)L ηIηK − ∇J ∇IV ηIηJ]

XIJ = − RIKJL(Dμϕ)K(Dμϕ)L − ∇J ∇IV

Yμν
IJ = [𝒟μ, 𝒟ν]IJ = RIJKL(Dμϕ)K(Dνϕ)L + Fμν

A ∇JtA
I
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Two-loop building blocks

(3) Identify our covariant building blocks in the geometric Lagrangian expansions (match). 

  b) at two loop: , , , , , A Aμ Aμν B Bμ Bμν

 

 

 

      sym(bcd) 

      sym(bcd) 

Aabc = −
1
6

∇(a ∇b ∇c)V −
1

18
(∇aRbdce + ∇bRcdae + ∇cRadbe)(Dμϕ)d(Dμϕ)e

Aμ
a|bc =

1
3

(Rabcd + Racbd)(Dμϕ)d

Aμν
ab|c = 0

Babcd = −
1
24

∇a ∇b ∇c ∇dV −
1

24
∇a ∇d Rbecf(Dμϕ)e(Dμϕ) f +

1
6

Reabf Recdg(Dμϕ) f(Dμϕ)g

Bμ
a|bcd =

1
4

(∇d Rabce)(Dμϕ)e

Bμν
ab|cd = −

1
12

ημν(Racbd + Radbc)

𝒪(η3)

𝒪(η4)

(4) Apply the generalized formulae to obtain covariant RGE results in terms of geometric objects. 



Application
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Starting from the O(N) EFT in the basis 

 

where ,  , 

identify the geometric objects 
  

                     and            

and the potential 

 

which define the building blocks         ,      and       , ,   , ,  

                                             lowest order:                                     

ℒ =
1
2

(∂μϕ ⋅ ∂μϕ) −
m2

2
(ϕ ⋅ ϕ) −

λ
4

(ϕ ⋅ ϕ)2 + C1(ϕ ⋅ ϕ)3 + CE(ϕ ⋅ ϕ)(∂μϕ ⋅ ∂μϕ)

C1 CE ∼ 𝒪 (Λ−2)

gij = δij (1 + 2CE(ϕ ⋅ ϕ))
↪ Γi

jk = 2CE (δi
kϕj + δi

jϕk − δjkϕi) Rijkl = 4CE (δilδjk − δikδjl)

V =
m2

2
(ϕ ⋅ ϕ) +

λ
4

(ϕ ⋅ ϕ)2 − C1(ϕ ⋅ ϕ)3

Yμν X A Aμ B Bμ Bμν

Λ−2 Λ2 1 Λ−2 1 Λ−4 Λ−2

27

Example: O(N) EFT
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Example: O(N) EFT

To derive the counterterms 

 

at  we simply apply 

 

         

                 

ℒ =
1
2

Zϕ(∂μϕ ⋅ ∂μϕ) −
1
2 (m2 + m2

c.t.)(ϕ ⋅ ϕ) −
1
4

μ2ϵZ2
ϕ (λ + λc.t.)(ϕ ⋅ ϕ)2

+μ4ϵZ3
ϕ (C1 + C1c.t.)(ϕ ⋅ ϕ)3 + μ2ϵZ2

ϕ (CE + CEc.t.)(ϕ ⋅ ϕ)(∂μϕ ⋅ ∂μϕ)

𝒪(Λ−2)

ℒc.t. = {−
1
4ϵ

Tr[X2]}
1

+{ −
3
4ϵ

𝒟μAijk𝒟μAijk + ( 9
2ϵ2

−
9
2ϵ ) AijkXk

lAijl + ( 3
2ϵ2

−
15
4ϵ ) 𝒟μAμ

i|jkXk
lAijl + ( 9

2ϵ2
−

9
4ϵ ) Aμ

i|jkXk
l𝒟μAijl

+
3
ϵ2

BijklXijXkl +
1

8ϵ2
Bμμ

ij|kl(𝒟
2X)ijXkl −

1
4ϵ2

Bμμ
ij|klX

i
mXmjXkl +

1
2ϵ2

Bmuν
ij|kl (𝒟μX)ik(𝒟νX) jl}2
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Example: O(N) EFT

The anomalous dimension  is defined by 

 

The counterterm can be organized into  
order of the  pole  and power of loops  

γi

·Ci = − ϵ(Fi − 2)Ci + γi

ϵ k L

Cbare
i μ−(Fi−2)ϵ = Ci +

∞

∑
k=1

∑
L

a(k,L)
i ({Cj})

ϵk

Combining the two give the definition 

 

Only  pole define the RGE.

γi = 2∑
L

La(1,L)
i

1/ϵ

·m2 = {2(n + 2)λm2 − 8nm4CE}1
+ {−10(n + 2)λ2m2 +

80
3

(n + 2)λm4CE}
2

·λ = {2(n + 8)λ2 − 16(n + 3)λm2CE − 24(n + 4)m2C1}1

+{−12(3n + 14)λ3 +
32
3

(22n + 113)λ2m2CE + 480(n + 4)λm2C1}
2

·CE = {4(n + 2)λCE}1
+ {−34(n + 2)λ2CE}2

·C1 = {20λ2CE + 6(n + 14)λC1}1
+ {−

8
3

(23n + 259)λ3CE − 42(7n + 54)λ2C1}
2

 RGE at two loop:O(N)

number of fields in Oi
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RGE obtained from geometry

Using this technique, RGE were computed for: 

up to one-loop order 

• SMEFT bosonic sector to dim 8 [Helset, Jenkins, Manohar, 2212.03253] 

• SMEFT bosonic operators from a fermion loop to dim 8 [Assi, Helset, Manohar, JP, Shen, 2307.03187] 

up to two-loop order [Jenkins, Manohar, Naterop, JP, 2310.19883] 

•  scalar EFT to dim 6          agree with [Cao, Herzog, Melia, Nepveu, 2105.12742] 

• SMEFT scalar sector to dim 6    new!  now crosschecked by [Born, Fuentes-Martín, Kvedaraitė, Thomsen, 2410.07320] 

• PT to                              agree with [Bijnens, Colangelo, Ecker, hep-ph/9907333] 

 directly usable for dim 8

O(N) →
→

χ 𝒪(p6) →

↪

 agree with [Chala, Guedes, Ramos, Santiago, 2106.05291]  
  [Das Bakshi, Chala, Díaz-Carmona, Guedes, 2205.03301] 

→



Conclusion
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Conclusion

• EFTs have a pivotal position between New Physics models and data interpretation. 

• Field-space geometry offer an alternative, more basis-independent, description of EFTs. 

• Algebraic formulae can be used to compute the Renormalization Group Equations. 
 done at one loop for any spin, at two loop for scalars. 

• RGE calculations with geometry become a pure algebraic exercise. 
 applicable to any EFT order

↪

↪
ϕ1

ϕ2



Thank you for listening!


