Gravitational relics from topological defects

Naoya Kitajima FRIS, Tohoku University

NK, Nakayama, 2212.13573, 2306.17390 NK, Lee, Murai, Takahashi, Yin, 2306.17146 NK, Lee, Takahashi, Yin, 2311.14590 + ongoing work

International Joint Workshop on Standard Model and Beyond, Sydney, 2024/12/9-13

Gravitational waves from cosmic strings / domain walls

Topological defects in cosmology

Scaling law : O(1) (long) strings / Hubble volume

GW emission from cosmic strings

Credit: Daniel Dominguez/CERN

Quadrupole formula for GW emission: $\dot{E}_{
m GW} \sim G(\ddot{D})^2$

quadrupole moment: $D \sim ML^2 \sim \mu L^3$, $\ddot{D} \sim \omega^3 D \sim L^{-3}D$

 μ : string tension, L: typical loop size ~ (typical oscillation frequency)⁻¹

GW emission rate: $\dot{E}_{\rm GW} \sim G\mu^2 \equiv \Gamma_{\rm GW} G\mu^2$

 $G\mu \sim (v/M_P)^2 \sim 10^{-7} (v/10^{15} \text{GeV})^2$

Abelian-Higgs model

$$\mathcal{L} = (\mathcal{D}_{\mu}\Phi)^* \mathcal{D}^{\mu}\Phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - V(\Phi), \ V(\Phi) = \frac{\lambda}{4}(|\Phi|^2 - v^2)^2$$
$$(\mathcal{D}_{\mu} = \partial_{\mu} - ieA_{\mu}, \ F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})$$

Peccei-Quinn model

$$\mathcal{L} = (\partial_{\mu}\Phi)^* \partial^{\mu}\Phi - V(\Phi), \ V(\Phi) = \frac{\lambda}{4} (|\Phi|^2 - v^2)^2$$

Lattice simulation (with 4096³ grids)

$$\Phi'' + 2\mathcal{H}\Phi' - D_i D_i \Phi + a^2 \frac{\partial V}{\partial \Phi^*} = 0,$$

$$F'_{0i} + \partial_j F_{ij} - 2ea^2 \operatorname{Im}(\Phi^* D_i \Phi) = 0,$$

$$\partial_i F_{0i} - 2ea^2 \operatorname{Im}(\Phi^* \Phi') = 0$$

AOBA supercomputing system (SX-Aurora TUBASA) in Tohoku U.

16 cores, 256 vector length, 96GB / 1VE

Light Dark photon DM scenario

- "Light" dark photons can be produced by cosmic strings
 e = 0 limit corresponds to the massless NG boson emission (global string case)
- Vector boson production becomes inefficient for $\ell_{
 m loop}\gtrsim m_A^{-1}$
- After that, string evolves like "local" string network loses energy only through the GW emission (Nambu-Goto limit)

(near) global string -> local (gauge) string

Mean separation NK, Nakayama 2212.13573

Table 1: Simulation setup and linear fitting parameters of the mean string separation in terms of the conformal time, defined by $m_r d_{sep} = a m_r \tau + b$.

- Dark photon DM relic abundance:

$$\Omega_A h^2 = \frac{m_A (n_{A,0}/s_0)h^2}{\rho_{\rm cr,0}/s_0} \simeq 0.091 \left(\frac{\xi}{12}\right) \left(\frac{m_A}{10^{-13}\,\rm eV}\right)^{1/2} \left(\frac{v}{10^{14}\,\rm GeV}\right)^2$$

see also Long, Wang 1901.03312

 $\begin{aligned} \xi &= \mathrm{const} \quad \text{Hindmarsh et al, 1908.03522, Hindmarsh et al, 2102.07723} \\ \xi &= 0.15 \log \left(\frac{m_r}{m_A} \right) \simeq 12 + 0.15 \log \left[\left(\frac{m_r}{10^{14} \,\mathrm{GeV}} \right) \left(\frac{10^{-13} \,\mathrm{eV}}{m_A} \right) \right] \quad \overset{\mathrm{G}}{\underset{\mathrm{B}}{\mathrm{Hom}}} \end{aligned}$

Gorghetto et al, 1806.04677 Kawasaki et al, 1806.05566 Buschmann et al, 2108.05368

Blanco-Pillado+ 1709.02434

NK, Nakayama 2306.17390 (Dark photon DM scenario)

Domain walls

spontaneous breaking of discrete symmetry

Scaling law of domain walls in the expanding Universe

Energy density of domain wall

$$\rho_{\rm DW} = \sigma H \ (\propto H^{-2}/H^{-3} \propto a^{-2})$$

(in radiation dominated Universe)

-> domain wall domination (domain wall problem)

Potential bias and domain wall annihilation

Gravitational waves from domain wall decay

Hiramatsu, Kawasaki, Saikawa (2010)

Hiramatsu, Kawasaki, Saikawa (2014)

QCD axion domain wall

Axion potential:

 $\mathcal{L} \ni -\frac{\alpha_s}{8\pi} \left(\frac{n_g \phi}{f_\phi} + \theta \right) G^a_{\mu\nu} \tilde{G}^{a\mu\nu} \longrightarrow \text{QCD axion potential (in the minimal scenario)}$

$$V_{\rm QCD}(\phi) = \chi(T) \left[1 - \cos\left(\frac{n_g \phi}{f_\phi} + \theta\right) \right], \quad \chi(T) = \begin{cases} \chi_0 & (T < T_{\rm QCD}) \\ \chi_0 \left(\frac{T}{T_{\rm QCD}}\right)^{-c} & (T \ge T_{\rm QCD}) \end{cases}$$

 $c = 8.16, \ \chi_0 = (75.6 \,\mathrm{MeV})^4, \ T_{\mathrm{QCD}} = 153 \,\mathrm{MeV}$ Borsanyi et al 1606.07494

- Field equation (Klein-Gordon equation) in flat FLRW universe

$$\ddot{\phi} + 3H\dot{\phi} - \frac{\nabla^2 \phi}{a^2} + \frac{\partial V}{\partial \phi} = 0, \quad V(\phi) = V_0 - \frac{1}{2}m_0^2\phi^2 + \frac{\lambda}{4}\phi^4 + \Delta V$$

bias:
$$\Delta V = \lambda v^3 \phi \times b(\tau), \quad b(\tau) = \frac{\epsilon}{1 + e^{-2(\tau - \tau')/\delta\tau}}$$

 $\epsilon = 0.2/m_0$
 $\epsilon = 0.025, 0.05, 0.1$

- Gravitational wave (tensor metric perturbation)

$$ds^2 = dt^2 - a^2(t)(\delta_{ij} + h_{ij})dx^i dx^j \longrightarrow \ddot{h}_{ij} + 3H\dot{h}_{ij} - \frac{\nabla^2 h_{ij}}{a^2} = -16\pi G\Lambda^{kl}_{ij}\Pi_{kl}$$

 Λ^{kl}_{ij} : TT projection tensor
 $\Pi_{ij} = -\partial_i \phi \partial_j \phi/a^2$: Energy momentum tensor
- GW density parameter:

$$\rho_{\rm GW}(t) = \frac{1}{32\pi G} \langle \dot{h}_{ij}(\boldsymbol{x}) \dot{h}_{ij}(\boldsymbol{x}) \rangle \longrightarrow \Omega_{\rm GW}(f) = \frac{1}{\rho_{\rm cr}} \frac{d\rho_{\rm GW}}{d\ln f} \qquad \rho_{\rm cr} = 3H^2 M_P^2$$
(critical density)

We performed 3D lattice simulation (4,096³ grids)

Gravitational wave spectrum

See also Ferreira, Gasparotto, Hiramatsu, Obata, Pujolas (2312.14104) for CMB-scale GW signal Ferreira, Notari, Pujolas, Rompineve (2401.14331)

Primordial black holes from domain walls

(ongoing work)

PBH formation from domain wall collapse

3+1 formalism

$$ds^{2} = -\alpha^{2}dt^{2} + \gamma_{ij}(\beta^{i}dt + dx^{i})(\beta^{j}dt + dx^{j})$$

Einstein equations

$$\begin{aligned} \mathcal{H} &= R + K^2 - K_{ij}K^{ij} - 16\pi\rho = 0 \qquad \text{(Hamiltonian constraint)} \\ \mathcal{M}^i &= D_j(K^{ij} - \gamma^{ij}K) - 8\pi S^i = 0 \qquad \text{(momentum constraint)} \\ \partial_t \gamma_{ij} &= -2\alpha K_{ij} + D_i \beta_j + D_j \beta_i \\ \partial_t K_{ij} &= \alpha (R_{ij} - 2K_{ik}K_j^k + KK_{ij}) - D_i D_j \alpha - 8\pi\alpha \left[S_{ij} - \frac{1}{2}\gamma_{ij}(S - \rho) \right] \\ &+ \beta^k \partial_k K_{ij} + K_{ik} \partial_j \beta^k + K_{jk} \partial_i \beta^k, \end{aligned}$$

 $K_{ij} = -\gamma_i^{\mu} \gamma_j^{\nu} \nabla_{\mu} n_{\nu}, \quad K = \gamma^{ij} K_{ij} \qquad n^{\mu} = (\alpha^{-1}, -\alpha^{-1} \beta^i), \quad n_{\mu} = (-\alpha, 0, 0, 0)$ (extrinsic curvature)

(Practically, we use the BSSN or CCZ4 formulations)

Gauge fixing

$$\partial_t \alpha = -2\eta \alpha (K - \langle K \rangle) + \beta^i \partial_i \alpha, \quad \partial_t \beta^i = \frac{3}{4} B^i, \quad \partial_t B^i = \partial_t \bar{\Gamma}^i - \eta B^i$$

(dynamical slice / moving puncture, Gamma-driver)

 $\alpha -> 0$ indicates strong gravity / existence of black hole

Scalar field evolution

$$S = -\int d^4x \sqrt{-g} \left[\frac{1}{2} \nabla^a \varphi \nabla_a \varphi - V(\varphi) \right], \quad T_{ab} = \nabla_a \varphi \nabla_b \varphi + g_{ab} \left(-\frac{1}{2} \partial_\alpha \varphi \partial^\alpha \varphi - V(\varphi) \right)$$

$$\begin{aligned} \partial_t \varphi &= \alpha \Pi + \beta^i \partial_i \varphi, \quad \Pi = \frac{1}{\alpha} (\partial_t \varphi - \beta^i \partial_i \varphi), \\ \partial_t \Pi &= \beta^i \partial_i \Pi + \gamma^{ij} (\alpha \partial_i \partial_j \varphi + \partial_j \varphi \partial_i \alpha) + \alpha \left(K \Pi - \Gamma^k \partial_k \varphi - \frac{\partial V}{\partial \varphi} \right) \\ Z_2 \text{ domain wall : } \quad V(\phi) &= \frac{\lambda}{4} (\phi^2 - v^2)^2 \end{aligned}$$

Other cosmological applications : preheating, oscillon, cosmic string, axion star See e.g. Helfer et al 1609.04724, Yoo et al 1811.00762; Giblin, Tishue 1907.10601; Nazari et al 2010.05933 **PBH** formation from domain wall collapse

$$\sigma = \frac{4}{3}\sqrt{\lambda}v^2, \quad \mathcal{A}_{\rm dw} = 4\pi R_0^2, \quad M = \sigma \mathcal{A}_{\rm dw}$$

(tension, surface area, and mass of spherically closed domain wall)

$$\frac{R_s}{\delta_{\rm dw}} = \frac{2GM}{(\sqrt{\lambda}v)^{-1}} = \frac{2}{3}(mR_0)^2 \left(\frac{v}{M_P}\right)^2 > 1$$

(PBH formation occurs when the Schwarzschild radius is larger than the domain wall width)

(i)
$$v = 0.3 \text{ M}_P \& R_0 = 10 \text{m}^{-1} - R_s / \delta_{dw} = 6 - PBH$$
 formation

(ii) v = 0.3 M_P & R₀ = 7m⁻¹ -> R_s / δ_{dw} = 2.9 -> PBH formation

(iii) v = 0.03 M_P & R₀ = 7m⁻¹ -> R_s / δ_{dw} = 0.029 -> no PBH

21.5lapse function field value 1 1.50.5 $\alpha \; (\mathrm{ct})$ ϕ (ct) 0 1 -0.5 0.5-1 -1.5 0 152530 1520 2530 352035 10 10 mtmt

Time evolution of central values

mt

(i)
$$v = 0.3 M_P$$
, $R_0 = 10m^{-1}$

(ii)
$$v = 0.3 M_P$$
, $R_0 = 7m^{-1}$

consistent with the rough estimate for Schwarzschild radius

(iii) v = 0.03 M_P & R₀ = 7m⁻¹ -> R_s / δ_{dw} = 0.029

Summary and discussion

- Light dark photons can be produced from the string loop collapse
- Gravitational waves are emitted as a signal of this scenario

Spectrum is different from both local and global one It can be tested by combining pulsar timing and direct detection

- We have numerically followed the DW annihilation process induced by the potential bias
- QCD axion domain walls naturally predict the GW with nHz band
 It can be tested by pulsar timing observations

Summary and discussion

- We have shown numerically the PBH formation from DW collapse (using numerical relativity)
- non-spherical collapse —> gravitational wave emission

(oscillaton case seems more interesting)

- Estimation of PBH abundance
 - percolation theory is necessary
 - domain walls from superhorizon-scale fluctuation is interesting (ruled-out?)

Gonzalez, NK, Takahashi, Yin 2211.06849 NK, Lee, Takahashi, Yin, 2311.14590

- Inclusion of the potential bias

BSSN formalism

Nakamura, Oohara, Kojima (1987), Shibata, Nakamura (1995), Baumgarte, Shapiro (1998)

$$\gamma_{ij} = e^{4\phi} \bar{\gamma}_{ij}$$
 with $\det(\bar{\gamma}_{ij}) = 1$, $K_{ij} = A_{ij} + \frac{1}{3}\gamma_{ij}K$, $\tilde{A}_{ij} = e^{-4\phi}A_{ij}$

Evolution equations

$$\begin{split} \partial_t \phi &= -\frac{1}{6} \alpha K + \beta^i \partial_i \phi + \frac{1}{6} \partial_i \beta^i \\ \partial_t \bar{\gamma}_{ij} &= -2 \alpha \tilde{A}_{ij} + \beta^k \partial_k \bar{\gamma}_{ij} + \bar{\gamma}_{ik} \partial_j \beta^k + \bar{\gamma}_{jk} \partial_i \beta^k - \frac{2}{3} \bar{\gamma}_{ij} \partial_k \beta^k \\ \partial_t K &= -\gamma^{ij} D_i D_j \alpha + \alpha \left(\tilde{A}_{ij} \tilde{A}^{ij} + \frac{1}{3} K^2 \right) + 4 \pi \alpha (\rho + S) + \beta^i \partial_i K \\ \partial_t \tilde{A}_{ij} &= e^{-4\phi} [-D_i D_j \alpha + \alpha (R_{ij} - 8\pi S_{ij})]^{TF} + \alpha (K \tilde{A}_{ij} - 2 \tilde{A}_{il} \tilde{A}^l_j) \\ &+ \beta^k \partial_k \tilde{A}_{ij} + \tilde{A}_{ik} \partial_j \beta^k + \tilde{A}_{jk} \partial_i \beta^k - \frac{2}{3} \tilde{A}_{ij} \partial_k \beta^k \end{split}$$

$$\partial_t \bar{\Gamma}^i = -2\tilde{A}^{ij}\partial_j \alpha + 2\alpha \left(\bar{\Gamma}^i_{jk}\tilde{A}^{jk} - \frac{2}{3}\bar{\gamma}^{ij}\partial_j K - 8\pi\bar{\gamma}^{ij}S_j + 6\tilde{A}^{ij}\partial_j \phi \right) \\ + \beta^j \partial_j \bar{\Gamma}^i - \bar{\Gamma}^j \partial_j \beta^i + \frac{2}{3}\bar{\Gamma}^i \partial_j \beta^j + \frac{1}{3}\bar{\gamma}^{il}\partial_l \partial_j \beta^j + \bar{\gamma}^{lj}\partial_j \partial_l \beta^i$$

 $\bar{\Gamma}^i = \bar{\gamma}^{jk} \bar{\Gamma}^i_{jk}$ are regarded as dynamical degrees of freedom

Hamiltonian & momentum constraints:

$$\mathcal{H} = -\frac{1}{8}e^{5\phi}R + \frac{1}{8}e^{5\phi}\tilde{A}^{ij}\tilde{A}_{ij} - \frac{1}{12}e^{5\phi}K^2 + 2\pi e^{5\phi}\rho = 0$$
$$\mathcal{M}^i = \bar{D}_j(e^{6\phi}\tilde{A}^{ij}) - \frac{2}{3}e^{6\phi}\bar{D}^iK - 8\pi e^{10\phi}S^i = 0$$

Initial profile of closed domain wall (2D slice of 3D space)

domain wall φ -\/ $\Phi = +V$ 0.1

(i) $R_0 = 10m^{-1}$

(ii) $R_0 = 7m^{-1}$

lapse function (α) energy density 10⁰ 10⁻¹ 10⁻² -10⁻³ 10⁻⁴ 0.1

(i) $v = 0.3 M_P \& R_0 = 10m^{-1}$

(ii) $v = 0.3 M_P \& R_0 = 7m^{-1}$

(iii) v = 0.03 M_P & R₀ = 7m⁻¹ -> R_s / δ_{dw} = 0.029

