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Introduction



New Physics at LHC?

* We have been looking for new physics desperately at the LHC.
w only the SM-like Higgs was discovered

* Perhaps the sensitivity of traditional methods is not high enough?

 Can we utilize the deep machine learning technique to enhance the sensitivity
so that we can better discover/constrain new physics?



Types of Machine Learning

» Supervised learning

* Training data with labels (e.g., recognizing photos of cats and dogs)
* Unsupervised learning

* Training data without labels (e.g., analyze and cluster unlabeled datasets)
* Reinforced learning

* Data from interactions with the environment (e.g., chess and Go games)
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Supervised Unsupervised Reinforcement
Learning Learning Learning

> https://www.youtube.com/watch?v=Atg-S132v0o



Types of Machine Learning

* Supervised learning

* Training data with labels (e.g., recognizing photos of cats and dogs)
* Unsupervised learning

* Training data without labels (e.g., analyze and cluster unlabeled datasets)
* Reinforced learning

* Data from interactions with the environment (e.g., chess and Go games)
 Weakly supervised learning

 When labeled data are difficult or impossible or expensive to obtain
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VBF/GGF Higgs Production
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Event-CNN

* Train a convolutional neural network (CNN) by full supervision to discriminate the
two production mechanisms by examining the final-state image.

* A successful training typically requires at least tens of thousands of samples.

training validation testing
VBF events 105k 20k 33k
GGF events 83k 21k 20k

original image preprocessed image




Comparison of Classifiers
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Requirements on Training Data

 High-Quality Data: The dataset should be representative of the problem domain
and free of noise or irrelevant features. Preprocessing steps like removing
outliers, handling missing values, standardization by utilizing symmetries, and
balancing class distributions are crucial.

» Sufficient Data: Neural networks typically require large amounts of labeled data
to learn meaningful patterns. When the dataset is small, techniques like transfer
learning or data augmentation can mitigate data scarcity.

* Data Diversity: Samples in the datasets should be sufficiently diverse in
properties in order to help the model generalize better and avoid overfitting to
specific patterns.



Weak Supervision with CWolLa




Collider Simulations



Collider Simulations

* Particle experimentalists deal with real data collected
by detectors around colliders.
w just like analyzing real images for CS people
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Collider Simulations

* Particle experimentalists deal with real data collected
by detectors around colliders.

w just like analyzing real images for CS people

* As particle theorists, we think we are simulating
verisimilar data using various packages.
w N fact, we have been generating fake data all along
w problems: fixed-order in perturbation (e.g., CalcHEP,
MadGraph), model-dependent showering/hadronization

(e.g., Pythia, Herwig), crude detector simulations (e.g.,
Delphes, GEANT)
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Can We Be More Realistic?



Can We Be More Realistic?

* Use adversarial networks (so-called GAN). Louppe, Kagan, Cranmer 2016
w can alleviate model dependence during training, but at the cost of algorithmic
performance and computational resources
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Can We Be More Realistic?

* Use adversarial networks (so-called GAN). Louppe, Kagan, Cranmer 2016
w can alleviate model dependence during training, but at the cost of algorithmic
performance and computational resources

* |t would be nice to train directly using real data.
w put real data are unlabeled...

* Introduce classification without labels (CWolLa, pronounced as koala).
Metodiev, Nachman, Thaler 2017/
m pelonging to a broad framework called weak supervision, whose goal is to
learn from partially and/or imperfectly labeled data Herna'ndez-Gonz alez, Inza, Lozano 2016
w first weak supervision application in particle physics for quark vs gluon tagging
using only class proportions during training; shown to match the performance of
fully supervised algorithms Dery, Nachman, Rubbo, Schwartzman 2017

12



A Theorem for CWolLa

» Let X represent a list of observables or an image, used to
distinguish signal S from background B, and define:

+ p«(X): probability distribution of X for the signal,

» pp(X): probability distribution of X for the background.

Mixed Sample 1

00000

OOCO®
OlOIGCIGLE),
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©0066

Mixed Sample 2
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OeE®®
®Ee®O®

©C006

/

Classifier

Metodiev, Nachman, Thaler 201/

» Given mixed samples M, and M, defined in terms of pure events of $ and B

(both being identical in the two mixed samples) using

pum, (T) = fips(Z) + (1 — f1) pB(T)
P, (T) = faps(Z) + (1 — f2) pB(T)

with different signal fractions f; > f,, an optimal classifier (most powerful test

statistic) trained to distinguish samples in M, and M, is also optimal for

distinguishing S from B.

13




Remarks

* An important feature of CWol.a is that, unlike the learning from label proportions

(LLP) weak supervision, the label proportions f; and f, are not required for
training as long as they are different.

* This theorem only guarantees that the optimal classifier from CWolLa, if reached,
Is the same as the optimal classifier from fully-supervised learning.

» Just like most cases, successful training for CWola also requires a large amount
of samples.

 What happens if available data for the mixed samples are insufficient or limited,
as is often the case of real data for BSM searches?

14



Dark Valley Model



Dark Valley Model and Dark Jets

 Assume the existence of a dark confining sector that communicates with the

visible sector via a heavy /' portal: dark quarks
| |
LD—-Z, (5|Jq@v“q7; - gqu IDaY"qDa)

respective effective coupling constants

* For our purposes here, we d

e consider Z’ couplings to the d-quarks only,
though other SM particles are also possible;

e give Z' a mass without specifying its source; g

* will not worry about such issues as anomaly
cancellation and Z — Z’ mixing.

Courtesy of Hugues Beauchesne

» The LHC signature is a pair of dark jets with invariant mass consistent with m,..

16
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Dark Sector Parameter Choices

 The Z' mass is fixed at 5.5 TeV, and its width is fixed at 10 GeV.

w nvariant mass of the two leading jets being around 5.2 TeV (with some
constituents falling outside the reconstructed jets)

» The dark confining scale A, € {1, 5, 10, 20, 30, 40, 50} GeV.

 Dark vector p and pseudoscalar 7, masses and two (prompt) decay scenarios:

m,2 Albouy et al 2022
i) \/5.76 +1.5—22
AD

. Indirect Decay (ID): p, — #,7y, followed by 7, — dd for mﬂD/AD = 1.0

. Direct Decay (DD): p;,, 7, — dd for m, IAp = 1.8

17



Dijet Invariant Mass Distributions

ID; Ap = 10 GeV
X103 M;; histogram
i peak usually not | signal SR: 5F8n3| region |
1.6- i so prominent background SB: side-band region
14- i | i m two mixed samples (M,
. SB SR A and M,) with different
pl.2 i i signal/background fractions
c I ]
£0.8 i i
- Madgraph 2.7.3 with -206 i i
PDF = NN23L0O1 | i i
- Pythia 8.307 with 0.4- i i Signal and background
default settings 09- i | events are assumed to be
- Delphes 3.4.2 with i i the same in both SR and
default CMS card and jet 0- 8400 4500 5000 500 6000 SB, which should !ae vglld
radius R = 0.8 M; [GeV] to a good approximation.

Figure 1. Dijet invariant mass distributions for the indirect decaying scenario with Ap = 10 GeV and
for the SM background. Distributions are normalized to unity. Both signal and background satisfy
the selection criteria of table 1(b) except for the SR or SB conditions.

18



CNN + Dense Layers

» Prepare each jet image in three resolutions: 25 X 25, 50 X 50, 75 x 75.

* Use the images of the two leading jets as input data.

» Pass each image through a common CNN*, and each returns a score € [0, 1].

* Take the product of these two scores as the output of the full NN.

* The convolutional part of the NN is referred to as the feature extractor, and its

weights and biases are collectively labeled as ©.
w t0 be transferred later

» The weights and biases of the dense layers are collectively labeled as 6.
w10 be fine-tuned later

19
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- Below the learning thresholds, the NN fails to learn from data
because it cuts background and signal indiscriminately, resulting
in a significance even worse than without employing the NN.

- Increasing resolution tends to shift the thresholds higher
because more parameters are to be learned inside the NN.




Transfer Learning



Introduction to Transfer Learning

* The phrase “transfer learning (TL)” comes from psychology.
w g learner new to a fresh topic (e.qg., playing guitar or riding a motorcycle)
typically has a higher learning threshold, while a learner experienced In related
topics, even if different, (e.g., playing violin or riding a bicycle) usually has less
difficulty in quickly picking it up

 As an ML technique, TL reuses a pre-trained model developed for one task as
the starting point of a new model for a new task.
m transferring knowledge or experience extracted in the pre-trained model for a
source task/domain to a new model for a target task/domain
- Weights from the pre-trained model used to initialize those of the new model

 TL would only be successful when the features learned from the first model
trained on its task can be generalized and transferred to the second task.
m dataset in the second training should be sufficiently similar to those in the first

training

22



Pre-training and Fine-tuning
* Pre-training:

* A neural network would first be trained on a larger dataset (source data) based
upon simulations, which are only required to be sufficiently realistic but not
necessarily faithful, to either learn certain concepts or become a more efficient
learner.

* Fine-tuning:

* The pre-trained model is subsequently trained on a new and possibly smaller
dataset (target data), such as the actual collider data.

23



Transfer Learning by Pre-training and Fine-tuning

» Step 1: The NN is first trained to distinguish a sample of pure background from a
pure combination of different signals, which includes all the models mentioned

before (ID and DD, different values of A ), except the benchmark on which the

model will be tested.

 pre-training on a large set of simulations as the source data

w 200k S and 200k B events in the SR for training
+ 50k S and 50k B events for validation

w training both ® (from convolutional layers) and @ (from dense layers)

Layers of CNN
subnetwork

(convolutional 2D layer: 64 filters with 5 x 5 kernel size) 9
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size

flatten layer s cccccc s s s s s cm s s s e -—--——--
(dense layer: 128 units) x 3

dense layer (output): 1 unit

24



Transfer Learning by Pre-training and Fine-tuning

» Step 2: The NN is then trained to distinguish the mixed samples (i.e., the SR and
SB regions) using the actual data of the benchmark signal (of the true model) plus
the SM background.

w fine-tuning on the actual data as target data

w freezing © in the convolutional layers and reinitializing and training € in the

dense layers
w fixing the feature extraction part while training the classification part

(convolutional 2D layer: 64 filters with 5 x 5 kernel size) 9
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size

Layers of CNN | maxpooling layer: 2 x 2 pool size @
subnetwork convolutional 2D layer: 128 filters with 3 x 3 kernel size
flatten layer = c ccceccccccccccccsc e s s e e et - - -
(dense layer: 128 units) x 3 H

dense layer (output): 1 unit

25



Transfer Learning vs Regular CWolLa
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Significance before NN cut

- The amount of signal necessary to claim a 50 discovery can be
reduced by a factor of a few, which is due to the fact that the
NN can better keep the signals.

- Fluctuations in the significance are reduced, due to a smaller
amount of trainable parameters and more successful learning.




Data Augmentation



Augmentation Methods

 While there are numerous augmentation methods in the field of computer vision,

we focus on physics-inspired techniques related to our study. Wang et al 2024
Dillon, Favaro, Feiden, Modak, and Plehn 2024

* Considering augmentations that capture the symmetries of the physical events
and the experimental resolution or statistical fluctuations in the detector, we
iImplement three methods:

* D+ Smearing;

e Jet rotation; and

e a combination of the two.

» Additionally, we have applied 77 — ¢ smearing and Gaussian noise to jet images
and observed essentially no improvement.

28



pr Smearing Method

» The pr smearing method is used to simulate detector resolution/fluctuation
effects on the transverse momentum of jet constituents.

 This method resamples the transverse momentum p+ of jet constituents
according to the normal distribution:;

pr ~N(pr, f (pr)),  f(pr) = \/0-05210% +1.502py
where p; is the augmented transverse momentum, and f (pT) IS the energy

smearing function applied by Delphes (with p+ normalized in units of GeV ).

 The preprocessing is then applied after the p+ smearing augmentation.

* This augmentation helps the model consider the detector effects. It has the
effect of making the training results more robust.

29



Jet Rotation Method

* [he jet rotation method rotates each jet with respect to its center by a random
angle 0 € |—r, 7] to enlarge the diversity of training datasets.

» More specifically, the (17, @") coordinates of a jet constituent after preprocessing
are rotated as follows: " = n'cos@ — ¢psinf and ¢p” = n'sinf + @'sin G,
where (1", ") are the rotated coordinates.

* We allow the two leading jets in an event to be rotated by different angles,
thereby further increasing the diversity of the training dataset.

* The complete workflow for preparing jet images with this augmentation is:
translation, orientation, flipping, jet rotation, followed by pixelation.

» We have tested other ranges of jet rotation angles, including [—z/6,7/6],

|—7/3,7/3], and |—z/2,71/2].
w the training performance improves as the range of rotation angles increases

30



Sensitivity after NN cut

Sensitivity Improvement

 Here we consider the “+5 augmentation,” which means that the training dataset
consists of the original data plus 5 augmented versions.

* The model’s performance improves significantly even with just +5 augmentation.
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Sensitivity after NN cut

Sensitivity Improvement

 Here we consider the “+5 augmentation,” which means that the training dataset
consists of the original data plus 5 augmented versions.

* The model’s performance improves significantly even with just +5 augmentation.
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Sensitivity after NN cut

Dependence on Augmentation Size

e Here, we focus on the “p+ smearing + jet rotation” augmentation method.

* The performance improvement is not linear in the augmentation size.
m “4+5 augmentation” is already pretty effective
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Dependence on Augmentation Size

e Here, we focus on the “p+ smearing + jet rotation” augmentation method.

* The performance improvement is not linear in the augmentation size.
m “4+5 augmentation” is already pretty effective
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Sensitivity after NN cut

Asymptotic Behavior of Augmentation Size
» Set the signal sensitivity to 5 before applying the NN selection.

* A small sample augmentation can already boost the sensitivity significantly, and
there is no point in enlarging the dataset indefinitely.
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Sensitivity after NN cut

Asymptotic Behavior of Augmentation Size
» Set the signal sensitivity to 5 before applying the NN selection.

* A small sample augmentation can already boost the sensitivity significantly, and
there iIs no point in enlarging the dataset indefinitely.

others saturate

— 0 : : '
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pt smearing = pr smearing more effective = pr smea = augmentation
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Impacts of Systematic Uncertainty

* Here, we consider a relative background uncertainty of 1% for illustration

purposes, though the typical relative uncertainty is 5%.

CMS 2020

e Data augmentation still significantly enhances the performance of NNs.
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Impacts of Systematic Uncertainty

* Here, we consider a relative background uncertainty of 1% for illustration
purposes, though the typical relative uncertainty is 5%.

e Data augmentation still significantly enhances the performance of NNs.
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Summary

 Weak supervision (CWola) have the advantages of being able to train on real
data and of exploiting distinctive signal properties.
w jdeal tools for anomaly searches
w fail when signals are limited

* We propose to use the transfer learning (TL) technique and show that it can
drastically improve the performance of CWol.a searches, particularly in the low-
significance region, and that the amount of signal required for discovery can be
reduced by a factor of a few (because of better identification of signals).

* We also propose to use the data augmentation technigue and show that jet

rotation is more effective than p smearing, that a mere +5 augmentation can

already achieve great results, and that the NN still outperforms even when
systematic background uncertainty Is considered.
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