 θ -vacua, quantum gravity and particles spectrum[†]

Otari Sakhelashvili

The University of Sydney

Sydney, Dec 9

 † † † with Gia Dvali and Archil Kobakhidze, [2[40](#page-0-0)6.18402[\]](#page-1-0)a[nd](#page-0-0) [\[](#page-0-0)[2](#page-1-0)40[8.0](#page-30-0)[75](#page-0-0)[35\]](#page-30-0) $\qquad \qquad \circ \circ \circ$

GR vacua

$$
S = \frac{M_{pl}^2}{2} \int d^4x \sqrt{-g} (R(g) - 2\Lambda),
$$

 g - metric, $Λ$ - cosmological term. de Sitter $Λ > 0$, anti-de Sitter $Λ < 0$, Minkowski $Λ = 0$.

[∗] Isolated Ads is fine, via Ads/CFT duality Malda[ce](#page-0-0)n[a](#page-2-0)['](#page-2-0)[9](#page-0-0)[8](#page-1-0)

GR vacua

$$
S = \frac{M_{pl}^2}{2} \int d^4x \sqrt{-g} (R(g) - 2\Lambda),
$$

 g - metric, Λ - cosmological term. de Sitter $Λ > 0$, anti-de Sitter $Λ < 0$, Minkowski $Λ = 0$.

Quantum $=$ no de Sitter Dvali, Gomez '14,'16+Zell, '17. The ground state = no evolution in time. de Sitter space $T \propto H$ Gibbons, Hawking '77 . Temporary de Sitter as an exited state on Minkowski vacuum is fine Berezhiani, Dvali, Sakhelashvili '21, 24.

[∗] Isolated Ads is fine, via Ads/CFT duality Malda[ce](#page-1-0)n[a](#page-3-0)['](#page-3-0)[9](#page-0-0)[8](#page-1-0)

GR vacua

$$
S = \frac{M_{pl}^2}{2} \int d^4x \sqrt{-g} (R(g) - 2\Lambda),
$$

 g - metric, Λ - cosmological term. de Sitter $Λ > 0$, anti-de Sitter $Λ < 0$, Minkowski $Λ = 0$.

Quantum $=$ no de Sitter Dvali, Gomez '14,'16+Zell, '17. The ground state = no evolution in time. de Sitter space $T \propto H$ Gibbons, Hawking '77 . Temporary de Sitter as an exited state on Minkowski vacuum is fine Berezhiani, Dvali, Sakhelashvili '21, 24.

Anti-de Sitter (AdS) cosmology leads to a big crunch. So, Cosmology = Minkowski vacua. [∗]

S-matrix formulation singles out the Minkowski vacuum Dvali '20

[∗] Isolated Ads is fine, via Ads/CFT duality Malda[ce](#page-2-0)n[a](#page-4-0)['](#page-4-0)[9](#page-0-0)[8](#page-1-0)

Can we fix an unique Minkowski vacuum?

Lets tune

$$
\Lambda = 0.\\
$$

We have Minkowski vacuum, and quantum gravity with cosmology.

Are we in a consistent theory?

Can we fix an unique Minkowski vacuum?

Lets tune

$$
\Lambda=0.
$$

We have Minkowski vacuum, and quantum gravity with cosmology.

Are we in a consistent theory?

No, if we have super-selected vacua with different energies. We cannot pick one and discard others.

E.g. QCD θ -vacua, $\mathcal{E} \propto \theta^2$.

If $\theta = 0 =$ Minkowski, $\theta' \neq \theta =$ de Sitter.

In gravity, the strong CP puzzle $=$ consistency problem Dvali 22

KELK KØLK VELKEN EL 1990

The QCD vacuum

Topology of the QCD vacuum,

$$
\pi_3(SU(N_c))=Z
$$

with Instantons,

$$
\mathcal{M}\sim e^{-\frac{8\pi^2}{g^2}},
$$

making θ -angle physical

$$
\mathcal{L}_{\theta} = \theta \frac{g^2}{16\pi^2} \mathsf{G}\tilde{\mathsf{G}},
$$

and vacuum energy,

$$
\mathcal{E} \propto \theta^2
$$

KELK KØLK VELKEN EL 1990

Callan, Dashen, Gross '76, Jackiw, Rebbi '76 $\theta = 0$ is a minimum of energy Vafa, Witten '84

The (traditional) Strong CP puzzle

 $\theta \leq 10^{-10}$ From EDMN e.g. C. Abel, et al. '20

Chiral quarks

$$
\psi \to e^{i\gamma_5 \alpha} \psi,
$$

$$
\theta \to \theta + 2\alpha
$$

Integral form of anomaly

$$
Q_5(t=\infty) - Q_5(t=-\infty) = 2n,
$$

Chiral massive quark needs Peccei, Quinn '77 symmetry

$$
|\Phi|e^{-i\frac{a(x)}{f_a}}\bar{\psi}\psi
$$

implies an axion Wilczek '78, Weinberg '78 with

$$
a(x) \rightarrow a(x) - 2\alpha f_a
$$

How does the axion work?

TSV correlator,

$$
\operatorname{FT}\langle G\tilde{G}(x) \vert G\tilde{G}(0)\rangle_{p\to 0}\propto \left.\frac{p^2}{p^2-m^2}\right|_{p\to 0}
$$

If $m = 0$, θ is physical, and

$$
\theta \propto \langle \tilde{\mathsf{G}} \mathsf{G} \rangle
$$

Axion makes θ unphysical, with $m \neq 0$. This effect alternatively can be understood as the 3-form Higgs effect $(0+1) \tilde{G}G = *dC$ Dvali '05

If $m_u = 0$, η' plays role of the axion. Also, In QCD η' gaps the correlator.

KORKARA REPASA DA VOCA

Axion in the context of the Gravity

 $a \rightarrow a + c$ not exact means,

$$
\mathrm{FT}\langle\, \tilde{G}(x)\, \vert\, \tilde{G}(0)\rangle_{\rho\rightarrow 0}\neq 0
$$

This is considered as a quality problem, and can not happen in the gravity. So we predict, $\bar{\theta} = 0$ '05 '22 Dvali, Sakhelashvili '21

Alternatively 2-form axion can solve the problem, which can not be undone via continues deformations.

$$
\mathcal{L} = \frac{1}{f_a^2}(C - f_a dB)^2
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Gravitational Instantons

Eguchi and Hanson '78 (EH) found euclidean solution of GR,

$$
ds^{2} = \left(1 - \frac{a^{4}}{r^{4}}\right)^{-1} dr^{2} + r^{2} \left(\sigma_{x}^{2} + \sigma_{y}^{2}\right) + r^{2} \left(1 - \frac{a^{4}}{r^{4}}\right) \sigma_{z}^{2}
$$

σ's are $SU(2)$ elements (We have 3-angles ϕ , θ , ψ) $d\sigma_x = 2\sigma_y \wedge \sigma_z$.

KID KAR KE KE KE YA GA

Gravitational Instantons

Eguchi and Hanson '78 (EH) found euclidean solution of GR,

$$
ds^{2} = \left(1 - \frac{a^{4}}{r^{4}}\right)^{-1} dr^{2} + r^{2} \left(\sigma_{x}^{2} + \sigma_{y}^{2}\right) + r^{2} \left(1 - \frac{a^{4}}{r^{4}}\right) \sigma_{z}^{2}
$$

σ's are $SU(2)$ elements (We have 3-angles ϕ , θ , ψ) $d\sigma_x = 2\sigma_y \wedge \sigma_z$.

The boundary at infinity S^3/Z_2 and the boundary at $r = a$ (coordinate singularity) is S^2 , corresponding invariants,

$$
\chi = \frac{1}{8\pi^2} \int d^4x \sqrt{g} \left(R^2 - 4R_{\mu\nu}^2 + R_{\mu\nu\alpha\beta}^2 \right) + \text{bound. terms} = 2
$$

$$
\tau = -\frac{1}{24\pi^2} \int d^4x \, R\tilde{R} = 1
$$

KELK KØLK VELKEN EL 1990

The Gravity CP-problem

Vanilla GR has zero action. A term

$$
\Delta S = c \frac{\chi}{2}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Makes action finite. $c >> 1$, EFT works $\mathcal{M} \sim e^{-c}$ c encodes the cut-off scale $c \sim \left(\frac{M_{\sf pl}}{\Lambda_{\sf gr}}\right)^2$

The Gravity CP-problem

Vanilla GR has zero action. A term

$$
\Delta S = c \frac{\chi}{2}
$$

Makes action finite. $c >> 1$, EFT works $\mathcal{M} \sim e^{-c}$ c encodes the cut-off scale $c \sim \left(\frac{M_{\sf pl}}{\Lambda_{\sf gr}}\right)^2$

We have θ -term in the theory

$$
S = \frac{\theta_g}{24\pi^2} \int d^4x R \tilde{R}
$$

EH-Instantons make

$$
\mathrm{FT}\langle \tilde R R(x) \ \tilde R R(0) \rangle_{p\to 0} \neq 0
$$

A new CP puzzle! The S-matrix consistency $=$ consistency problem!

Lets solve the Gravity-CP problem.

Solving the problem

The Grav. anomaly $\partial_\mu j_5^\mu\propto R\tilde R$ Delbourgo, Salam '72

But helicity 1/2 fermion does not have zero modes $Q_5(t=\infty) - Q_5(t=-\infty) = 0$

Fermion with helicity 3/2 has 2 zero modes Eguchi, Hanson '78

$$
\psi_{\mu} \rightarrow e^{i\gamma_{5}\alpha} \psi_{\mu}
$$

$$
\theta_{g} \rightarrow \theta_{g} + 2\alpha
$$

Solving the problem

The Grav. anomaly $\partial_\mu j_5^\mu\propto R\tilde R$ Delbourgo, Salam '72

But helicity 1/2 fermion does not have zero modes $Q_5(t=\infty) - Q_5(t=-\infty) = 0$

Fermion with helicity 3/2 has 2 zero modes Eguchi, Hanson '78

$$
\psi_{\mu} \to e^{i\gamma_5 \alpha} \psi_{\mu}
$$

$$
\theta_{g} \to \theta_{g} + 2\alpha
$$

Consistency of chiral $3/2$ = supergravity, a local (gauge) SUSY. Freedman, Nieuwenhuizen, Ferrara, '76, see e.g. Freedman, Proeyen, Supergravity (book)

The solution of Gravity CP requires SUGRA

KORK EXTERNE PROVIDE

Breaking of SUSY

Instanton effects give effective t'Hooft vertex,

$$
\frac{W^*_{3/2}}{M_{\rho l}^2}\,\bar{\psi}^{\mu}\sigma_{\mu\nu}\psi^{\nu}
$$

It break R -symmetry, vacuum $=$ AdS, energy $\propto -3 |W_{3/2}|^2/M_{\rho l}^2.$

Uplift to Minkowski, with Superfield X and superpotential,

$$
W = X\Lambda_X^2 + W_{3/2}
$$

The Polonyi model (Generated by Instantons) with broken SUSY

We predict an ALP a_R (phase of X, $\langle X \rangle \sim M_{pl}$) with mass $\sim m_{3/2}$ and decay constant M_{pl} (maybe a good Dark matter)[†]

 \dagger Note: since $1/2$ fermion does not deliver zero modes, their anomalies should cancel (making coefficient zero.) $\partial_\mu j_5^\mu\propto R\tilde R$ K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The Electroweak part of The Standard Model

Solution Gravity-CP, Strong-CP $=\eta'/$ axion and η_R/a_R .

What about EW theory?

$$
\mathcal{L} = -\frac{1}{4}W_{\mu\nu}^2 + \theta_W \frac{1}{16\pi^2}W\tilde{W} + |D\phi|^2 - V(\phi)
$$

Constrained instantons Anselm, Johansen '93,'94, see e.g. Shifman's book AQFT '22 ,

FT
$$
\langle W\tilde{W}(x) W\tilde{W}(0)\rangle_{p\to 0} \sim e^{-\frac{2\pi}{\alpha_W}} \neq 0
$$

Gravitational framework we must have a scalar,

$$
\frac{a}{f_a} \to \frac{a}{f_a} - \alpha
$$

$$
\theta_W \to \theta_W + \alpha
$$

KELK KØLK VELKEN EL 1990

The matter content of the Standard Model

Add leptons and quarks. They have,

$$
I \to e^{i\alpha}I
$$

$$
q \to e^{i\frac{\beta}{3}}q
$$

Symmetry one $\alpha = -\beta$, $B - L$ symmetry, a good global symmetry. Symmetry two $\alpha = \beta$, $B + L$ symmetry is anomalous, meaning

$$
\theta_W \to \theta_W + \alpha
$$

making,

$$
\mathrm{FT}\langle W\tilde{W}(x)~W\tilde{W}(0)\rangle_{\rho\rightarrow 0}=0
$$

KORKARA REPASA DA VOCA

A particle must gap it! We predict a particle in the STANDARD MODEL! We will call it η_w

Origin of the n_w

For simplicity: ONE generation, and ONE color.

ql

Carries an unit $B + L$ charge. If the Standard Model delivers particle, the above must condense. It is a t' Hooft vertex. At $p \to 0$ same point insertion, gives,

 $\langle |q l| \rangle \neq 0$

This is in full agreement with the index theorem,

$$
\Delta Q_{B+L} = \int \frac{1}{16\pi^2} \tilde{W} W
$$

An explicit computation proves the condensate (see backup slides).

KELK KØLK VELKEN EL 1990

Good vs Bad quality B+L

We consider good quality $B + L = \theta_W$ unphysical Explicit operators, break $B + L$

qqql

We can't rotate θ_W away. But gravity requires θ_W to be unphysical

KORKARA REPASA DA VOCA

Good vs Bad quality $B+L$

We consider good quality $B + L = \theta_W$ unphysical Explicit operators, break $B + L$

qqql

We can't rotate θ_W away. But gravity requires θ_W to be unphysical

We must add

$$
|\Phi|e^{i\frac{a}{f_a}}qqql,
$$

ALP making $B + L$ symmetry good, or $B_{\mu\nu} = \theta_w$ unphysical.

With gravity we still predict of η_w , with (slightly) changed origin (mixture with an ALP). This is like η' in the case of $m_u\neq 0$. It is mixed with axion.

Conclusions

- \triangleright Quantum gravity works only on Minkowski space and on eternal AdS without cosmology
- \blacktriangleright All theta vacua should be exactly nullified
- \blacktriangleright QCD $\bar{\theta}$ is exactly zero
- \triangleright Gravity has CP problem and solution requires SUGRA
- \triangleright We predict ALP with mass, degenerated to gravitino mass
- \blacktriangleright We argue about existence of η_w
- \blacktriangleright The θ_W should be unphysical hence, η_W must exist, a good $B + L$ symmetry / $B_{\mu\nu}$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Representations of the $1/2$ fermion are constrained, perturbative gravitational anomaly must cancel.

Thank you

K ロ ▶ K 레 ▶ K 호 K K 환 K (호 K Y Q Q Q Q

To summarize,

$$
t_Q\sim \frac{M_{pl}^2}{H^3}
$$

Rigidity = double-scaling limit $M_{pl} \rightarrow \infty$, H fixed, but $2 \rightarrow 2$ Graviton interaction

$$
\alpha_{gr} = P^2/M_{pl}^2 \rightarrow 0,
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

is trivial.

We could ask, what happens if we rely all the physics on gravitino condesate,

$$
\langle\bar\psi^\mu\sigma_{\mu\nu}\psi^\nu\rangle\neq0
$$

In this scenario, role of the axion is played by η_R , which has mass $m_{3/2}$ and decay constant M_{pl} . We still study the mechanism of the SUSY breaking. A very similar mechanism, which we discuss in our paper "Electroweak η_w meson"

Why we do not use the two-form $B_{\mu\nu}$, like in QCD? There are potential consistency issues Duff, Nieuwenhuizen '80

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

This has ramification in the SUSY framework, let us add an extra Y-fields,

$$
W = \hat{X}\Lambda_X^2 - g\hat{X}\hat{Y}_j^2 + W_{3/2}
$$

which sets the theory in AdS, and going back to Minkowski requires, extra fields \bar{Y} 's

$$
W = \hat{X}\Lambda_X^2 - g\hat{X}\hat{Y}_j^2 + M\hat{\tilde{Y}}_j\hat{Y}_j + W_{3/2}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The 1/2-anomaly is cancelled.

Backup slide (Instanton)

For example,

$$
\sum_{i=1}^{4} dx_i^2 = dr^2 + r^2(\sigma_x^2 + \sigma_y^2 + \sigma_z^2)
$$

$$
\sigma_z \sim d\psi + \cos\theta d\phi
$$

$$
u^2 = r^2(1 - \frac{a^4}{r^4})
$$

$$
r = a, u = 0
$$

$$
ds^2 \simeq \frac{1}{4} du^2 + \frac{1}{4} u^2 (d\psi + \cos\theta d\phi)^2 + \frac{1}{4} a^2 d\Omega^2
$$

Kロトメ部トメミトメミト ミニのQC

Backup slide (SUSY)

$$
X_0 = \pm M_{pl}(\sqrt{3} + 1)
$$

\n
$$
W_{3/2} = \mp \Lambda_X^2 M_{pl}(\sqrt{3} + 2)
$$

\n
$$
m_{3/2} = W/M_{pl}^2 = \Lambda_X^2/M_{pl}
$$

\n
$$
gXY_j^2 \simeq \Lambda_Y^2
$$

Kロトメ部トメミトメミト ミニのRC

Backup slide (Condensate and zero modes)

 $\Psi=(\psi,\phi)^{\rm T}$ Anselm, Johansen '93,94, where

$$
\psi = q_L + \ell_R^c \ , \quad \phi = \left(\begin{array}{c} u_R \\ d_R \end{array} \right) + \left(\begin{array}{c} e_L^c \\ -\nu_L^c \end{array} \right) \ .
$$

The Lagrangian

 $\mathcal{L} = \bar{\Psi}\hat{\mathcal{D}}\Psi$ $\Psi \rightarrow {\rm e}^{i\alpha\mathsf{\Gamma}_5/2}\Psi \;, \;\;\; \Psi^\dagger \rightarrow \Psi^\dagger{\rm e}^{i\alpha\mathsf{\Gamma}_5/2} \;,$

 $\Gamma_5 = \text{diag}(\gamma_5, -\gamma_5)$. Lets add μ breaks $B + L$, Then,

$$
\langle \Psi^{\dagger}(x)\Psi(x)\rangle = \lim_{\mu \to 0} \int \frac{d^4z d\rho}{\rho^5} D(\rho) \langle x | (\hat{\mathcal{D}} + i\mu)^{-1} | x \rangle
$$

$$
\simeq -i\nu^3 \left(\frac{2\pi}{\alpha}\right)^4 e^{-\frac{2\pi}{\alpha}}
$$

 $D(\rho) \sim \rho \mu$ and $\langle x | (\hat{D} + i\mu)^{-1} | x \rangle = \frac{P_0(x-z)}{i\mu}$ iµ.
◆ ロ ▶ → *덴* ▶ → 로 ▶ → 로 ▶ │ 로 │ ◆) 9,00

Backup slide (D-operator)

$$
\hat{\mathcal{D}} \equiv \begin{pmatrix} -i\vec{p} & i\epsilon M_{\ell}^{*} \epsilon P_{L} - iM_{q} P_{R} \\ i\epsilon M_{\ell}^{T} \epsilon P_{R} - iM_{q}^{\dagger} P_{L} & -i\vec{\vartheta} \end{pmatrix}
$$

$$
\frac{1}{\hat{\mathcal{D}} + i\mu} = \frac{P_{0}}{i\mu} + \Delta - i\mu\Delta^{2} + \mathcal{O}(\mu^{2})
$$

$$
D(\rho) = \left(\frac{2\pi}{\alpha(\rho)}\right)^{4} e^{-\frac{2\pi}{\alpha(\rho)} - 2\pi^{2}v^{2}\rho^{2}} \rho\mu
$$

Kロトメ部トメミトメミト ミニのRC