$p \rightarrow \pi^{0}e^{+}$ $p \rightarrow \gamma e^{-}$ Baryon-number violation $n \rightarrow 2$ from the bottom up n - -

John Gargalionis

Standard Model and Beyond 2024 & Gordon Godfrey Workshop

Based mostly on 2312.13361 with Arnau Bas i Beneito, Juan Herrero-Garcia, Arcadi Santamaria and Michael A Schmidt

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

The bottom-up approach has received a lot of attention recently

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

MatchmakerEFT: Carmona et

 $(b^{\dagger}\bar{\sigma}^{\mu}s)(\mu^{\dagger}\bar{\sigma}_{\mu}\mu)$ $(Q^{\dagger}\bar{\sigma}^{\mu}Q)(L^{\dagger}\bar{\sigma}_{\mu}L)$

 $U_1^{\mu} \sim (\mathbf{3}, \mathbf{1}, 2/3)$

 $SU(4) \rightarrow SU(3) \times U(1)$

If we saw proton decay, how could we pin down the underlying model?

Measurement EFT JG, Herrero-García, Schmidt 2025 Simplified models **Theoretical framework**

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Soudan Frejus Kamiokande IMB

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Super-K

Hyper-K

Dec 09, 2024

4

The SMEFT predicts
$$L$$
 and B violation

$$\mathcal{L} = \mathcal{L}_{d \leq 4} + \sum_{p,q} \frac{c_{pq}^{(5)}}{\Lambda} (L_p L_q) HH + \sum_{i=1}^{4} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{d=6} + \sum_{i=1}^{6} \frac{c_i^{(7)}}{\Lambda^3} \mathcal{O}_i^{d=7} + \cdots$$

$$\Delta B = \Delta L = 1$$

$$\mathcal{D}_{qque} = (Q^i Q^j) (Q^i L^k) \epsilon_{ik} \epsilon_{jl}$$

$$\mathcal{O}_{qque} = (Q^i Q^j) (\bar{u}^{\dagger} \bar{e}^{\dagger}) \epsilon_{ij}$$

$$\mathcal{O}_{duue} = (\bar{d}^{\dagger} \bar{u}^{\dagger}) (\bar{u}^{\dagger} \bar{e}^{\dagger})$$

$$\mathcal{O}_{duul} = (\bar{d}^{\dagger} \bar{u}^{\dagger}) (Q^i L^j) \epsilon_{ij}$$

$$d = 6$$

$$\mathcal{O}_{idud\tilde{H}} = (L^{\dagger} \bar{d}^{\dagger}) (\bar{u}^{\dagger} \bar{d}^{\dagger}) \tilde{H}$$

$$\mathcal{O}_{idud\tilde{H}} = (\bar{c} Q^i) (\bar{d}^{\dagger} \bar{d}^{\dagger}) H^{\dagger} = (\bar{e} \sigma_{\mu} \bar{d}^{\dagger}) (\bar{d}^{\dagger} i D^{\mu} \bar{d}^{\dagger})$$

$$\mathcal{O}_{idud\tilde{H}} = (L^{\dagger} \bar{d}^{\dagger}) (\bar{u}^{\dagger} \bar{d}^{\dagger}) \tilde{H}$$

$$\mathcal{O}_{idud\tilde{H}} = (L^{\dagger} \bar{d}^{\dagger}) (\bar{u}^{\dagger} \bar{d}^{\dagger}) \tilde{H}$$

$$\mathcal{O}_{idud\tilde{H}} = (\bar{c} Q^i) (\bar{d}^{\dagger} \bar{d}^{\dagger}) \tilde{H}^{\dagger} = (\bar{e} \sigma_{\mu} \bar{d}^{\dagger}) (\bar{d}^{\dagger} i D^{\mu} \bar{d}^{\dagger})$$

$$\mathcal{O}_{idud\tilde{H}} = (L^{\dagger} \bar{d}^{\dagger}) (\bar{u}^{\dagger} \bar{d}^{\dagger}) \tilde{H}$$

$$\mathcal{O}_{idud\tilde{H}} = (L^{\dagger} \bar{d}^{\dagger}) (\bar{u}^{\dagger} \bar{d}^{\dagger}) \tilde{H}$$

 $H \sim (\mathbf{1}, \mathbf{2}, \frac{1}{2}), \quad Q \sim (\mathbf{3}, \mathbf{2}, \frac{1}{6}), \quad \bar{u} \sim (\bar{\mathbf{3}}, \mathbf{1}, -$

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

$$(\frac{2}{3}), \quad \bar{d} \sim (\bar{\mathbf{3}}, \mathbf{1}, \frac{1}{3}), \quad L \sim (\mathbf{1}, \mathbf{2}, -\frac{1}{2}), \quad \bar{e} \sim (\mathbf{1}, \mathbf{1}, 1)$$

Dec 09, 2024

Kobach 1604.05726

Nath, Perez hep-ph/0601023

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Just a handful of two-body decays could be leading signals

Decay mode	Limit $[10^{34} \text{ yr}]$	Hyper-K $[10^{34} \text{ yr}]$	ΔI	Δ
Proton chann	els			
$p \to \pi^0 e^+$	2.4	3.2	$-\frac{1}{2}$	
$p \to \pi^0 \mu^+$	1.6	7.7	$-\frac{1}{2}$	
$p \to \eta^0 e^+$	1.0	4.3	$-\frac{1}{2}$	
$p \to \eta^0 \mu^+$	0.47	4.9	$-\frac{1}{2}$	
$p \to \pi^+ \nu_r$	0.039		$\frac{1}{2}$	
$p \to K^0 e^+$	0.10		-1	
$p \to K^0 \mu^+$	0.16		-1	
$p \to K^+ \nu_r$	0.59	3.2	0	
$p \to \bar{K}^0 e^+$	0.10		0	-
$p \to \bar{K}^0 \mu^+$	0.16		0	-
Neutron chan	nels			
$n \to \pi^0 \nu_r$	0.11		$\frac{1}{2}$	
$n \to \eta^0 \nu_r$	0.016		$\frac{1}{2}$	
$n \to \pi^- e^+$	0.53	2.0	$-\frac{1}{2}$	
$n \to \pi^- \mu^+$	0.35	1.8	$-\frac{1}{2}$	
$n \to \pi^+ e^-$	0.0065		$\frac{3}{2}$	
$n \to \pi^+ \mu^-$	0.0049		$\frac{3}{2}$	
$n \to K^+ e^-$	0.0032	1.0	1	
$n \to K^+ \mu^-$	0.0057		1	
$n \to K^0 \nu_r$	0.013		0	
$n \to K^- e^+$	0.0017		0	_
$n \to \bar{K}^0 \nu_r$	0.013		1	-

Decays to (anti-)leptons are generated at dimension (6) 7 in the SMEFT

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Hyper-K estimates: 1805.04163

Leading signals predicted by operators are fixed by symmetries

Decay mode	Limit $[10^{34} \text{ yr}]$	Hyper-K $[10^{34} \text{ yr}]$	ΔI	ΔS	ΔL	
Proton chann	lels					
$p \to \pi^0 e^+$	2.4	3.2	$-\frac{1}{2}$	0	-1	
$p \to \pi^0 \mu^+$	1.6	7.7	$-\frac{1}{2}$	0	-1	1
$p \rightarrow \eta^0 e^+$	1.0	4.3	$-\frac{\overline{1}}{2}$	0	-1	Т
$p ightarrow \eta^0 \mu^+$	0.47	4.9	$-\frac{1}{2}$	0	-1	
$p \to \pi^+ \nu_r$	0.039		$\frac{\overline{1}}{2}$	0	± 1	2
$p \to K^0 e^+$	0.10		-1	1	-1	Ζ
$p \to K^0 \mu^+$	0.16		-1	1	-1	J
$p \to K^+ \nu_r$	0.59	3.2	0	1	± 1	4
$p \to \bar{K}^0 e^+$	0.10		0	-1	-1	5
$p \to \bar{K}^0 \mu^+$	0.16		0	-1	-1	ر
Neutron chan	nels					
$n \to \pi^0 \nu_r$	0.11		$\frac{1}{2}$	0	± 1	
$n o \eta^0 \nu_r$	0.016		$\frac{1}{2}$	0	± 1	
$n \to \pi^- e^+$	0.53	2.0	$-\frac{1}{2}$	0	-1	
$n \to \pi^- \mu^+$	0.35	1.8	$-\frac{1}{2}$	0	-1	
$n \to \pi^+ e^-$	0.0065		$\frac{3}{2}$	0	1	6
$n \to \pi^+ \mu^-$	0.0049		$\frac{3}{2}$	0	1	0
$n \to K^+ e^-$	0.0032	1.0	1	1	1	7
$n \to K^+ \mu^-$	0.0057		1	1	1	/
$n \to K^0 \nu_r$	0.013		0	1	± 1	
$n \to K^- e^+$	0.0017		0	-1	-1	
$n \to \bar{K}^0 \nu_r$	0.013		1	-1	± 1	

Decays to (anti-)leptons are generated at dimension (6) 7 in the SMEFT

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Name [42]	Operator	Flavour	ΔI	ΔS
$[\mathcal{O}_{udd}^{S,LL}]_{111r}$	$(ud)(d\nu_r)$	(8 , 1)	$\frac{1}{2}$	0
$[\mathcal{O}_{udd}^{S,LL}]_{121r}$	$(us)(d u_r)$	$({f 8},{f 1})$	0	1
$[\mathcal{O}_{udd}^{S,LL}]_{112r}$	$(ud)(s\nu_r)$	$({f 8},{f 1})$	0	1
$[\mathcal{O}^{S,LL}_{duu}]_{111r}$	$(du)(ue_r)$	(8 , 1)	$-\frac{1}{2}$	0
$[\mathcal{O}^{S,LL}_{duu}]_{211r}$	$(su)(ue_r)$	$({f 8},{f 1})$	-1	1
$[\mathcal{O}_{duu}^{S,LR}]_{111r}$	$(du)(ar{u}^{\dagger}ar{e}_{r}^{\dagger})$	$(ar{3},3)$	$-\frac{1}{2}$	0
$[\mathcal{O}_{duu}^{\widetilde{S},\widetilde{L}R}]_{211r}$	$(su)(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger})$	$(ar{3},3)$	-1	1
$[\mathcal{O}_{duu}^{S,RL}]_{111r}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(ue_r)$	$({f 3},ar{f 3})$	$-\frac{1}{2}$	0
$[\mathcal{O}_{duu}^{S,RL}]_{211r}$	$(\bar{s}^{\dagger}\bar{u}^{\dagger})(ue_r)$	$({f 3},ar{f 3})$	-1	1
$[\mathcal{O}_{dud}^{S,RL}]_{111r}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(d\nu_r)$	$({f 3},ar{f 3})$	$\frac{1}{2}$	0
$[\mathcal{O}_{dud}^{S,RL}]_{211r}$	$(\bar{s}^{\dagger}\bar{u}^{\dagger})(d u_r)$	$({f 3},ar{f 3})$	0	1
$[\mathcal{O}_{dud}^{S,RL}]_{112r}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(s\nu_r)$	$({f 3},ar{f 3})$	0	1
$[\mathcal{O}_{ddu}^{S,RL}]_{[12]1r}$	$(\bar{d}^{\dagger}\bar{s}^{\dagger})(u\nu_{r})$	$({f 3},ar{f 3})$	0	1
$[\mathcal{O}_{duu}^{S,RR}]_{111r}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger})$	$({f 1},{f 8})$	$-\frac{1}{2}$	0
$[\mathcal{O}_{duu}^{S,RR}]_{211r}$	$(\bar{s}^{\dagger}\bar{u}^{\dagger})(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger})$	(1 , 8)	-1	1

Name $[42]$	Operator	Flavour	ΔI	ΔS	
$[\mathcal{O}_{ddd}^{S,LL}]_{[12]r1}$	$(ds)(\bar{e}_r d)$	(8 , 1)	1	1	
$[\mathcal{O}^{S,LR}_{udd}]_{11r1}$	$(ud)(u_r^\dagger ar d^\dagger)$	$(ar{3},3)$	$\frac{1}{2}$	0	
$[\mathcal{O}^{S,LR}_{udd}]_{12r1}$	$(us)(u_r^\dagger ar{d}^\dagger)$	$(ar{3},3)$	0	1	
$[\mathcal{O}_{udd}^{\overline{S},\overline{L}R}]_{11r2}$	$(ud)(u_r^\dagger \bar{s}^\dagger)$	$(ar{3},3)$	0	1	
$[\mathcal{O}_{ddu}^{S,LR}]_{[12]r1}$	$(ds)(u_r^\dagger ar u^\dagger)$	$(ar{3},3)$	0	1	
$[\mathcal{O}_{ddd}^{S,LR}]_{[12]r1}$	$(ds)(e_r^\dagger \bar{d}^\dagger)$	$(ar{3},3)$	1	1	
$[\mathcal{O}_{ddd}^{S,RL}]_{[12]r1}$	$(\bar{d}^{\dagger}\bar{s}^{\dagger})(\bar{e}_{r}d)$	$({f 3},ar{f 3})$	1	1	
$[\mathcal{O}^{S,RR}_{udd}]_{11r1}$	$(ar{u}^\daggerar{d}^\dagger)(u_r^\daggerar{d}^\dagger)$	(1 , 8)	$\frac{1}{2}$	0	
$[\mathcal{O}^{S,RR}_{udd}]_{12r1}$	$(ar{u}^\daggerar{s}^\dagger)(u_r^\daggerar{d}^\dagger)$	(1 , 8)	0	1	
$[\mathcal{O}_{udd}^{S,RR}]_{11r2}$	$(\bar{u}^{\dagger}\bar{d}^{\dagger})(\nu_{r}^{\dagger}\bar{s}^{\dagger})$	(1 , 8)	0	1	
$[\mathcal{O}_{ddd}^{S,RR}]_{[12]r1}$	$(\bar{d}^{\dagger}\bar{s}^{\dagger})(e_{r}^{\dagger}\bar{d}^{\dagger})$	(1 , 8)	1	1	

 $\Delta B = -\Delta L = -1$

$\Delta B = \Delta L = -1$

Generated at dimension-6 in the SMEFT

Generated at dimension-7 in the SMEFT

[42]: Jenkins, Manohar, Stoffer 1709.04486

Some LEFT operators are only generated above dimension-7 at tree level

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Liao, Ma 1607.07309 Jenkins, Manohar, Stoffer 1709.04486

Flavour! **Gisbert, et al** 2409.00218 Heeck, Watkins 2405.18478 Beneke, Finauri, Petrov 2404.09642

 $(\bar{d}_{p}^{\dagger}\bar{d}_{q}^{\dagger})(Q_{r}^{i}L_{s}^{j})H^{k}H^{l}\epsilon_{ik}\epsilon_{il}$

 $(\bar{e}_p^{\dagger}Q_{qi}^{\dagger})(Q_{rj}^{\dagger}Q_{sk}^{\dagger})H^iH^jH^k$ $(L_p^i \bar{u}_q)(Q_{ri}^{\dagger} Q_{sk}^{\dagger})H^{i'}H^j H^k \epsilon_{ii'}$

 $(Q_{p}^{i}iD^{\mu}Q_{q}^{j})(\bar{e}_{r}\sigma^{\mu}\bar{d}_{s}^{\dagger})\tilde{H}^{k}\tilde{H}^{l}\epsilon_{ik}\epsilon_{jl}$ $(Q_{p}^{i}iD^{\mu}Q_{q}^{j})(L_{r}^{\dagger}\bar{\sigma}^{\mu}Q_{s})\tilde{H}^{k}\tilde{H}^{l}\epsilon_{ik}\epsilon_{jl}$ $(\bar{u}_p i D^\mu \bar{d}_q) (Q^{\dagger}_{ri} \bar{\sigma}^\mu L^j_s) H^i H^k \epsilon_{jk}$

JG, Herrero-García, Schmidt 2401.04768

Loop-induced nucleon decays often dominate because

$$\frac{v}{\Lambda} \ll \frac{1}{16\pi^2}$$

Difficult to imagine leading effects in these LEFT operators

	So	me LEFT	Lower limit [GeV]	Process	LEFT coefficient
			$4.2 \cdot 10^{15} \cdot \sqrt{ [C_{qque}]_{1111} }$	$p \to \pi^0 e^+$	$[C_{duu}^{S,LR}]_{1111}$
	Name	SN	$3.0 \cdot 10^{15} \cdot \sqrt{ [C_{duql}]_{1111} }$	$p \rightarrow \pi^0 e^+$	$[C_{duu}^{S,RL}]_{1111}$
	$[\mathcal{O}^{S,LL}_{udd}]_{pqrs}$	$V_{qq'}V_{rr'}(C_{qqql,r'q})$	$2.9 \cdot 10^{15} \cdot \sqrt{ [C_{duue}]_{1111} }$	$p \rightarrow \pi^0 e^+$	$\begin{bmatrix} C_{duu}^{S,nn} \end{bmatrix}_{1111}$
0	$[\mathcal{O}^{S,LL}_{duu}]_{pqrs}$	$V_{pp'}(C_{qqql,rqp'})$	$2.9 \cdot 10^{15} \cdot \sqrt{ [C_{qqql}]_{1111} }$ $2.0 \cdot 10^{15} \cdot \sqrt{ [C_{qqql}]_{1111} }$	$p \rightarrow \pi^{0} e^{+}$	$\begin{bmatrix} C_{duu} \end{bmatrix}_{1111} \\ \begin{bmatrix} C^{S,LR} \end{bmatrix}$
L =	$[\mathcal{O}_{duu}^{S}]_{pqrs}$ $[\mathcal{O}_{duu}^{S,RL}]_{pqrs}$	$-V_{pp'}(C$	$2.0 \cdot 10^{-10} \cdot \sqrt{ [C_{qque}]_{1211} }$ $1.7 \cdot 10^{15} \cdot \sqrt{ [C_{qque}]_{1121} }$	$p \rightarrow \pi^{-} e^{-\nu}$ $p \rightarrow K^{+} \nu$	$[C_{duu}]_{1111}$ $[C^{S,LL}]_{1121}$
B –	$[\mathcal{O}^{S,RL}_{dud}]_{pqrs}$		$1.4 \cdot 10^{15} \cdot \sqrt{ [C_{agal}]_{1211} }$	$p \rightarrow \pi^0 e^+$	$[C_{udd}^{S,LL}]_{1111}$
,	$[\mathcal{O}^{S,RL}_{ddu}]_{pqrs}$ $[\mathcal{O}^{S,RR}]$	$(C_{ddqlHH},$	$1.3 \cdot 10^{15} \cdot \sqrt{ [C_{duql}]_{1121} }$	$p \to K^+ \nu$	$[C_{dud}^{S,RL}]_{1121}$
	$[\mathcal{O}_{duu}]_{pqrs}$ $[\mathcal{O}^{S,LL}]$	V V V (C u)	$7.8 \cdot 10^{14} \cdot \sqrt{ [C_{duql}]_{2111} }$	$p \to K^+ \nu$	$[C_{dud}^{S,RL}]_{2111}$
	$[\mathcal{O}_{ddd}]_{pqrs}$ $[\mathcal{O}_{udd}^{S,LR}]_{pqrs}$	$V_{ss'} V_{pp'} V_{qq'} \bigcirc_{eqqqHF} -V_{c}$	$5.9 \cdot 10^{14} \cdot \sqrt{ [C_{qqql}]_{2121} }$	$p \to K^+ \nu$	$\begin{bmatrix} C_{udd}^{S,LL} \end{bmatrix}_{1121}$
	$[\mathcal{O}_{ddu}^{S,LR}]_{pqrs}$	$V_{pp'}V_{qq'}(C_{luqqHH})$	$5.1 \cdot 10^{14} \cdot \sqrt{ [C_{duue}]_{2111} }$	$p \to K^0 e^+$	$\begin{bmatrix} C_{duu}^{S,RR} \end{bmatrix}_{2111}$
	$[\mathcal{O}^{S,LR}_{ddd}]_{pqrs}$	$V_{pp'}V_{qq'}(C_{\bar{l}dqq}$	$\frac{3.7 \cdot 10^{14} \cdot \sqrt{ [C_{duql}]_{2121} }}{3.6 \cdot 10^{14} \cdot \sqrt{ [C_{uql}]_{2121} }}$	$p \to K^+ \nu$	$\begin{bmatrix} C_{dud} \end{bmatrix}_{2111}$ $\begin{bmatrix} C^{S,LL} \end{bmatrix}_{111}$
	$[\mathcal{O}_{ddd}^{S,RL}]_{pqrs}$	$V_{ss'}(C_{ar{e}qdd\hat{L}})$	$3.0 \cdot 10^{-10} \cdot \sqrt{ [C_{qqql}]_{1131} }$ $2.7 \cdot 10^{14} \cdot \sqrt{ [C_{duql}]_{1121} }$	$p \to K^+ \nu$ $p \to K^+ \nu$	$[C_{udd}]^{[1121}$ $[C^{S,RL}]^{[1121}$
= 2	$[\mathcal{O}_{udd}^{}]_{pqrs}$ $[\mathcal{O}_{udd}^{S,RR}]_{pars}$		$2.6 \cdot 10^{14} \cdot \sqrt{ [C_{aaue}]_{1311} }$	$p \rightarrow \pi^0 e^+$	$[C_{dud}^{S,LR}]_{1111}$
– L	$[\mathcal{O}^{V,RL}]_{n=1}$		$2.5 \cdot 10^{14} \cdot \sqrt{ [C_{qqql}]_{1311} }$	$p \to K^+ \nu$	$[C_{udd}^{S,LL}]_{1121}$
В	$[\mathcal{O}_{ddu}^{ddu}]_{pqrs}^{pqrs} \ [\mathcal{O}_{ddd}^{V,RL}]_{pqrs}$	_	$1.7 \cdot 10^{14} \cdot \sqrt{ [C_{qqql}]_{2311} }$	$p \to K^+ \nu$	$[C_{udd}^{S,LL}]_{1121}$
	$[\mathcal{O}_{ddd}^{V,RR}]_{pqrs}$		$1.2 \cdot 10^{14} \cdot \sqrt{ [C_{qqql}]_{1231} }$	$p \to K^+ \nu$	$[C_{udd}^{S,LL}]_{1121}$
	$[\mathcal{O}_{ddu}^{V,LL}]_{pqrs}$ $[\mathcal{O}_{ddu}^{V,LL}]_{pqrs}$	$V_{pp'}V_{qq'}(C_{qqlqHF})$ $V_{pp'}V_{qq'}(C_{qqlqHF})$	$1.2 \cdot 10^{14} \cdot \sqrt{ [C_{qqql}]_{1321} }$	$p \to K^+ \nu$	$[C_{udd}^{S,LL}]_{1121}$
	$[\mathcal{O}_{ddd}^{V,LR}]_{pqrs}$	$V_{pp'}V_{qq'}(C_{qqedHH})$	$\frac{1.2 \cdot 10^{14} \cdot \sqrt{ [C_{qqql}]_{2131} }}{\sqrt{ [C_{qqql}]_{2131} }}$	$p \to K^+ \nu$	$[C_{udd}^{S,-}]_{1121}$ $[C^{S,RL}]_{1121}$
	$[\mathcal{O}_{dud}^{V,RL}]_{pqrs}$	$-V_{ss}$	$1.5 \cdot 10^{13} \cdot \sqrt{ [C_{aaal}]_{2121} }$	$p \rightarrow K^+ \nu$ $p \rightarrow K^+ \nu$	$[C_{dud}]_{1121}^{[C_{dud}]_{1121}}$
			$\nabla \Gamma = \nabla \nabla \Gamma = \nabla $	r · · · ·	L~udd J1121

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

dimension-7 at tree level

effects in these LEFT operators

10

We calculate de

$$\mathscr{L} = \begin{cases} g_{MB}^{N} \bar{B} \gamma^{\mu} \gamma_{5} N \partial_{\mu} M \\ \Delta B = 0 \end{cases} + m_{B\alpha} \bar{\ell}_{\alpha} B + i y_{M\alpha}^{N} \bar{\ell}_{\alpha} N M \end{cases}$$

First-time calculation of dim-7 nucleon decay rates using the chiral-Lagrangian method

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

5 C	ay rate	es usin	g BxPT	Aoki Yo	, et al. 1705.01 o et al. 2111.01
	α, β a	are domina	nt source of	$\langle 0 \epsilon^{abc} (\bar{u}_a^{\dagger} \bar{d}_b^{\dagger}) \iota$	$u_c p^{(s)} \rangle = \alpha P_L u$
	unce	rtainty in o	ur calculations	$\leq \langle 0 \epsilon^{abc} (u_a d_b) u_b \rangle$	$u_c p^{(s)} \rangle = \beta P_L u$
[A Matchi	ing to $\mathrm{B}\chi\mathrm{P}$	C of BNV dime	/ nsion-6 LEFT oper	rators
	Name	LEFT		${ m Flavour}/{ m B}\chi{ m PT}$	
ſ	$[\mathcal{O}_{udd}^{S,LL}]_{rstu}$	$(u_r d_s)(d_t u_u)$		(8 , 1)	
	$[{\cal O}^{S,LL}_{udd}]_{111r}$	$(ud)(d u_r)$	$-eta\overline{ u^c_{Lr}} ext{tr}(\xi B\xi^\dagger P_{32})$	$\supset -eta \overline{ u_{Lr}^c} n - rac{ieta}{f_\pi} \overline{ u_{Lr}^c} \left(\sqrt{rac{2}{2}} \right)$	$\frac{1}{32}n\eta - rac{1}{\sqrt{2}}n\pi^0 + p\pi^- \Big)$
ľ	$[\mathcal{O}_{udd}^{S,LL}]_{121r}$	$(us)(d u_r)$	$-eta u_{Lr}^c { m tr}(\xi B \xi^\dagger$	$P_{22}) \supset -\beta \nu_{Lr}^c \left(-\frac{\Lambda^{\circ}}{\sqrt{6}} + \frac{2}{\sqrt{6}}\right)$	$\left(rac{2c}{\sqrt{2}} ight) - rac{\imatheta}{f_\pi} u^c_{Lr} n K^0$
	$[\mathcal{O}_{udd}^{S,LL}]_{112r}$	$(ud)(s u_r)$	$-eta\overline{ u^c_{Lr}} ext{tr}(\xi B\xi^\dagger)$	$P_{33}) \supset \beta \sqrt{\frac{2}{3}} \overline{\nu_{Lr}^c} \Lambda^0 - \frac{i\beta}{f_\pi} \overline{\nu}$	$\overline{V_{Lr}^c}\left(nar{K}^0 + pK^- ight)$
	$[\mathcal{O}^{S,LL}_{duu}]_{rstu}$	$(d_r u_s)(u_t e_u)$		(8 , 1)	
	$[\mathcal{O}^{S,LL}_{duu}]_{111r}$	$(du)(ue_r)$	$-eta\overline{e_{Lr}^c}{ m tr}(\xi B\xi^\dagger ilde{P}_{31}$	$D \supset eta \overline{e^c_{Lr}} p + rac{ieta}{f_\pi} \overline{e^c_{Lr}} \left(\sqrt{rac{3}{2}} p ight)$	$p\eta + \frac{1}{\sqrt{2}}p\pi^0 + n\pi^+$
	$[\mathcal{O}^{S,LL}_{duu}]_{211r}$	$(su)(ue_r)$	$-eta\overline{e_{Lr}^c}{ m tr}($	$(\xi B \xi^{\dagger} P_{21}) \supset -\beta \overline{e_{Lr}^c} \Sigma^+ +$	$-rac{ieta}{f_\pi}\overline{e^c_{Lr}}par{K}^0$
	$[\mathcal{O}^{S,LR}_{uud}]_{[rs]tu}$	$(u_r u_s) (ar{d}_t^\dagger ar{e}_u^\dagger)$			
	$[\mathcal{O}^{S,LR}_{duu}]_{rstu}$	$(d_r u_s)(ar{u}_t^\dagger ar{e}_u^\dagger)$		$(ar{3},3)$	
	$[\mathcal{O}^{S,LR}_{duu}]_{111r}$	$(du)(ar{u}^\daggerar{e}_r^\dagger)$	$lpha \overline{e^c_{Rr}} { m tr}(\xi^\dagger B \xi^\dagger ilde{P}_{31})$:	$\supset -lpha \overline{e_{Rr}^c} p + rac{ilpha}{f_\pi} \overline{e_{Rr}^c} \left(-rac{1}{\sqrt{c}} \right)$	$\frac{1}{6}p\eta + \frac{1}{\sqrt{2}}p\pi^0 + n\pi^+$
	$[\mathcal{O}^{S,LR}_{duu}]_{211r}$	$(su)(ar{u}^\daggerar{e}_r^\dagger)$	$\longrightarrow \alpha \overline{e_{Rr}^c} tr($	$\xi^{\dagger}B\xi^{\dagger}P_{21}) \supset \alpha \overline{e_{Rr}^c}\Sigma^+ -$	$rac{ilpha}{f_\pi}\overline{e^c_{Rr}}par{K}^0$
	$[\mathcal{O}^{S,RL}_{uud}]_{[rs]tu}$	$(ar{u}_r^\daggerar{u}_s^\dagger)(d_t e_u)$			
	$[\mathcal{O}^{S,RL}_{duu}]_{rstu}$	$(ar{d}_r^\daggerar{u}_s^\dagger)(u_te_u)$		$({f 3},ar{f 3})$	

We package the decay rates into numerical matrices that are available online

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

https://zenodo.org/records/12664770

Running can lead to large enhancements in the limits derived

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

- Assume single-operator dominance
- Running dominated by gauge interactions, can be large
 - Expressions look like $16\pi^{2}\mu\frac{d\mu}{dc_{i}} = -4g_{3}^{2}c_{i} + \cdots$
 - 1.6 2.3 factor enhancement
- Strongest lower limit $\Lambda/\sqrt{c} > 2 \cdot 10^{15} \text{ GeV}$

The effect is milder at dimension 7 because of an accidental cancellation

•	Assume single-operator dominance	-	$1.2 \cdot 10^{11}$
•	Top-quark Yukawa relevant for Higgs wave function renormalisation	<u>)</u> —	10^{11}
•	Expressions look like $16\pi^2 \mu \frac{d\mu}{dc_i} = (-4g_3^2 + y_t^2)c_i + \cdots$	$\Lambda/\sqrt[3]{c}$ [GeV]	$8 \cdot 10^{10}$ $6 \cdot 10^{10}$ $4 \cdot 10^{10}$
•	1.2 – 1.3 factor enhancement		$2 \cdot 10^{10}$
•	Strongest lower limit $\Lambda/\sqrt{c} > 2 \cdot 10^{10} \text{ GeV}$	Witho RGEs	ut (

Pairs of non-zero Wilson coefficients show how different decay modes provide complementary constraints

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Several positive signals may allow us to exclude or determine if a single operator dominates Recall uncertainties in α, β !

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Several positive signals may allow us to exclude or determine if a single operator dominates

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Recall uncertainties in α, β !

Decay mode	Limit $[10^{34} \text{ yr}]$	Hyper-K $[10^{34} \text{ yr}]$	ΔI	ΔS	ΔL	
Proton chann	lels					
$p \to \pi^0 e^+$	2.4	3.2	$-\frac{1}{2}$	0	-1	
$p \to \pi^0 \mu^+$	1.6	7.7	$-\frac{1}{2}$	0	-1	1
$p \rightarrow \eta^0 e^+$	1.0	4.3	$-\frac{1}{2}$	0	-1	T
$p ightarrow \eta^0 \mu^+$	0.47	4.9	$-\frac{1}{2}$	0	-1	
$p \to \pi^+ \nu_r$	0.039		$\frac{\overline{1}}{2}$	0	± 1	2
$p \to K^0 e^+$	0.10		-1	1	-1	z
$p \to K^0 \mu^+$	0.16		-1	1	-1	J
$p \to K^+ \nu_r$	0.59	3.2	0	1	± 1	4
$p \to \bar{K}^0 e^+$	0.10		0	-1	-1	
$p \to \bar{K}^0 \mu^+$	0.16		0	-1	-1	
Neutron chan	inels					
$n \to \pi^0 \nu_r$	0.11		$\frac{1}{2}$	0	± 1	
$n o \eta^0 \nu_r$	0.016		$\frac{1}{2}$	0	± 1	
$n \to \pi^- e^+$	0.53	2.0	$-\frac{1}{2}$	0	-1	
$n \to \pi^- \mu^+$	0.35	1.8	$-\frac{1}{2}$	0	-1	
$n \to \pi^+ e^-$	0.0065		$\frac{3}{2}$	0	1	
$n \to \pi^+ \mu^-$	0.0049		$\frac{3}{2}$	0	1	
$n \to K^+ e^-$	0.0032	1.0	1	1	1	5
$n \to K^+ \mu^-$	0.0057		1	1	1	ر
$n \to K^0 \nu_r$	0.013		0	1	± 1	
$n \to K^- e^+$	0.0017		0	-1	-1	
$n \to \bar{K}^0 \nu_r$	0.013		1	-1	± 1	

Decays to (anti-)leptons are generated at dimension (6) 7 in the SMEFT

Dec 09, 2024

17

Example UV model shows flavour is important

Introduce scalar LQ and vector-like fermion

$$\omega_2 \sim (\mathbf{3}, \mathbf{1}, \frac{2}{3}) \quad Q_1 + \bar{Q}_1^{\dagger} \sim (\mathbf{3}, \mathbf{2}, \frac{1}{6})$$

Model generates two d = 7 operators at tree level

$$\frac{c_{\bar{l}dddH}^{pqrs}}{\Lambda^3} = \frac{y_{dd}^{[rs]} y_{dH}^{q*} y_{LQ_1}^{p*}}{M_{\omega_2}^2 M_Q} \qquad \frac{c_{\bar{l}dud\tilde{H}}^{pqrs}}{\Lambda^3} = 2 \frac{y_{dd}^{[qs]} y_{uH}^{r*} y_{LQ_1}^{p*}}{M_{\omega_2}^2 M_Q}$$

$$\mathcal{O}_{\bar{l}dddH}^{1211}: n \to K^+ e^-$$

$$\mathcal{O}_{\bar{l}dddH}^{1211,1112}: p \to K^+ \nu, n \to K^0 \nu$$

$$\bar{l}_{\bar{l}dud\tilde{H}}^{1211,1112}: p \to K^+ \nu, n \to K^0 \nu$$

$$\mathcal{O}_{ar{l}dqq ilde{H},1111}$$
 $\mathcal{O}_{ar{l}dud ilde{H},1211}$
 $\mathcal{O}_{ar{l}dud ilde{H},1112}$
 $\mathcal{O}_{ar{l}dqq ilde{H},1121}$
 $\mathcal{O}_{ar{l}dqq ilde{H},1121}$
 $\mathcal{O}_{ar{l}dqq ilde{H},1121}$
 $\mathcal{O}_{ar{l}dqq ilde{H},1121}$
 $\mathcal{O}_{ar{l}dqd ilde{H},1121}$

 $\mathcal{O}_{ar{l}dud ilde{H},1111}$

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

 $p \to K^+ \nu$

 $n \to K^+ e^-$

$\mathcal{O}_{ar{l}dud ilde{H},1111}$	-								
$\mathcal{O}_{ar{l}dqq ilde{H},1111}$	_	0.01	0.21	0.05	0.22		0.06		
$\mathcal{O}_{ar{l}dud ilde{H},1211}$	-	0.21	3.09	0.76	3.25		0.80		
$\mathcal{O}_{ar{l}dud ilde{H},1112}$	-	0.05	0.76	0.19	0.80		0.20		
$\mathcal{O}_{ar{l}dqq ilde{H},1211}$	-	0.22	3.25	0.80	3.42		0.84		
$\mathcal{O}_{ar{l}dqq ilde{H},1121}$	-								
$\mathcal{O}_{ar{l}dqq ilde{H},1112}$	-	0.06	0.80	0.20	0.84		0.21		
$\mathcal{O}_{ar{l}dddH,1121}$	-								
$\mathcal{O}_{ar{e}qdd ilde{H},1121}$	-								
	$\mathcal{O}_{\overline{l}d_{old} ilde{H}}$ 1111	$\left. \mathcal{O}_{ar{l}dqq ilde{H},1111}^{uuuu1,1111} ight ^{-}$	$\mathcal{O}_{ar{l}dud ilde{H},1211}$	$\mathcal{O}_{ar{l}dud ilde{H},1112}$	$\mathcal{O}_{ar{l}dqq ilde{H},1211}$ -	$\mathcal{O}_{ar{l}dqq ilde{H},1121}$	$\mathcal{O}_{ar{l}dqq ilde{H},1112}^{-1}$	$\mathcal{O}_{ar{l}ddH,1121}$	$\mathcal{O}_{ ilde{e}add ilde{H},1121}$ -

Example UV model shows flavour is important

Introduce scalar LQ and vector-like fermion

 $\omega_2 \sim (\mathbf{3}, \mathbf{1}, \frac{2}{3}) \quad Q_1 + \bar{Q}_1^{\dagger} \sim (\mathbf{3}, \mathbf{2}, \frac{1}{6})$

Model generates two d = 7 operators at tree level

$$\frac{c_{\bar{l}dddH}}{\Lambda^{3}} = \frac{y_{dd}^{[rs]}y_{dH}^{q*}y_{LQ_{1}}^{p*}}{M_{\omega_{2}}^{2}M_{Q}} \xrightarrow{c_{\bar{l}dud\tilde{H}}}{\Lambda^{3}} = 2\frac{y_{dd}^{[qs]}y_{uH}^{r*}y_{LQ_{1}}^{p*}}{M_{\omega_{2}}^{2}M_{Q}} \xrightarrow{O_{\bar{l}d}} \xrightarrow{O_{\bar{l}d}} O_{\bar{l}d}}{O_{\bar{l}d}}$$

$$O_{\bar{l}d} \xrightarrow{O_{\bar{l}d}} O_{\bar{l}d}$$

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

 $\mathcal{O}_{ar{l}d}$

 $\mathcal{O}_{ar{L}}$

Example UV model shows flavour is important

Introduce scalar LQ and vector-like fermion

$$\omega_2 \sim (\mathbf{3}, \mathbf{1}, \frac{2}{3}) \quad Q_1 + \bar{Q}_1^{\dagger} \sim (\mathbf{3}, \mathbf{2}, \frac{1}{6})$$

Model generates two d = 7 operators at tree level

$$\frac{c_{\bar{l}dddH}^{pqrs}}{\Lambda^3} = \frac{y_{dd}^{[rs]} y_{dH}^{q*} y_{LQ_1}^{p*}}{M_{\omega_2}^2 M_Q} \qquad \frac{c_{\bar{l}dud\tilde{H}}^{pqrs}}{\Lambda^3} = 2 \frac{y_{dd}^{[qs]} y_{uH}^{r*} y_{LQ_1}^{p*}}{M_{\omega_2}^2 M_Q}$$

$$\mathcal{O}_{\bar{l}dddH}^{1211}: n \to K^+ e^-$$

$$\mathcal{O}_{\bar{l}dud\tilde{H}}^{1211,1112}: p \to K^+ \nu, n \to K^0 \nu$$

$$\mathcal{O}_{ar{l}dqq ilde{H},1111}$$
 $\mathcal{O}_{ar{l}dud ilde{H},1211}$
 $\mathcal{O}_{ar{l}dud ilde{H},1112}$
 $\mathcal{O}_{ar{l}dqq ilde{H},1121}$
 $\mathcal{O}_{ar{l}dqq ilde{H},1121}$
 $\mathcal{O}_{ar{l}dqq ilde{H},1121}$
 $\mathcal{O}_{ar{l}dqq ilde{H},1121}$
 $\mathcal{O}_{ar{l}dqd ilde{H},1121}$

 $\mathcal{O}_{ar{l}dud ilde{H},1111}$

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

- Depending on symmetries, dominant contributions from either d = 6 (B L = 0) or d = 7 (B L = 2)
- **RG corrections are important**, limits enhanced by up to factor of 2.3
- Complementary constraints **exclude flat directions**
- Several positive signals may allow us to **determine the origin of baryon-number violation**
- **Caution:** Uncertainty on hadronic inputs is large

Conclusions

Thanks for your attention

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

$p \rightarrow \pi^{v} e^{+}$ $p \rightarrow \gamma e^+$ $n \rightarrow \pi^0$ $n \rightarrow$

Dec 09, 2024

22

Backup

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

 $p \rightarrow \pi^{U} e^{+}$ $p \rightarrow \gamma e^+$ $n \rightarrow \pi^0$ $n \rightarrow$

Name	Operator
Dimension	. 6
\mathcal{O}_{qqql}	$(Q_p^i Q_q^j)(Q_r^l L_s^k)\epsilon_{ik}\epsilon_{jl}$
\mathcal{O}_{qque}	$(Q_p^i Q_q^j)(\bar{u}_r^\dagger \bar{e}_s^\dagger)\epsilon_{ij}$
\mathcal{O}_{duue}	$(\bar{d}_p^{\dagger}\bar{u}_q^{\dagger})(\bar{u}_r^{\dagger}\bar{e}_s^{\dagger})$
\mathcal{O}_{duql}	$(\bar{d}_p^{\dagger}\bar{u}_q^{\dagger})(Q_r^iL_s^j)\epsilon_{ij}$
Dimension	. 7
$\mathcal{O}_{ar{l}dddH}$	$(L_p^{\dagger} \vec{d}_q^{\dagger}) (\vec{d}_r^{\dagger} \vec{d}_s^{\dagger}) H$
$\mathcal{O}_{ar{l}dqq ilde{H}}$	$(L_p^{\dagger} \vec{d}_q^{\dagger}) (Q_r Q_s^i) \tilde{H}^j \epsilon_{ij}$
$\mathcal{O}_{ar{e}qdd ilde{H}}$	$(\bar{e}_p Q_q^i) (\bar{d}_r^{\dagger} \bar{d}_s^{\dagger}) \tilde{H}^j \epsilon_{ij}$
$\mathcal{O}_{ar{l}dud ilde{H}}$	$(L_p^{\dagger} \bar{d}_q^{\dagger}) (\bar{u}_r^{\dagger} \bar{d}_s^{\dagger}) \tilde{H}$
$\mathcal{O}_{ar{l}qdDd}$	$(L_p^{\dagger}\bar{\sigma}^{\mu}Q_q)(\bar{d}_r^{\dagger}iD_{\mu}\bar{d}_s^{\dagger})$
$\mathcal{O}_{ar{e}dddD}$	$(\bar{e}_p \sigma^\mu \bar{d}_q^\dagger) (\bar{d}_r^\dagger i D_\mu \bar{d}_s^\dagger)$

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Permutation symmetry

Some two-body decays proceed through dimension-7 LEFT operators

Decay mode	Limit $[10^{34} \text{ yr}]$	Hyper-K $[10^{34} \text{ yr}]$	ΔI	ΔS	ΔL		Name	Ref. [56]	Operator	Flavour	Indices	ΔI	ΔS
Proton chann	els										11r1	$\frac{1}{2}$	0
$p \to \pi^0 e^+$	2.4	3.2	$-\frac{1}{2}$	0	-1		$[\mathcal{O}_{dud}^{V,RL}]_{pqrs}$	$\mathcal{O}^*_{d u u dD1}$	$(\vec{d}_p^{\dagger} i \overleftrightarrow{D}_{\mu} \bar{u}_q^{\dagger}) (\nu_r^{\dagger} \bar{\sigma}^{\mu} d_s)$	(3 , 6)	21r1	$\overset{2}{0}$	1
$p \to \pi^0 \mu^+$	1.6	7.7	$-\frac{1}{2}$	0	-1						11r2	0	1
$p \rightarrow \eta^0 e^+$	1.0	4.3	$-\frac{1}{2}$	0	-1					,	11r1	$\frac{1}{2}$	0
$p ightarrow \eta^0 \mu^+$	0.47	4.9	$-\frac{1}{2}$	0	-1		$[\mathcal{O}_{ddu}^{\mathbf{v},LL}]_{\{pq\}rs}$	$\mathcal{O}^*_{u u dD1}$	$(d_p i D_\mu d_q)(\nu_r \bar{\sigma}^\mu u_s)$	$({f 10},{f 1})$	12r1	$\frac{2}{0}$	1
$p \rightarrow \pi^+ \nu_r$	0.039		$\frac{1}{2}$	0	±1						11,21	1	0
$p \rightarrow K^0 e^+$	0.10		-1	1	-1		$[\mathcal{O}_{ddu}^{V,RL}]_{\{pq\}rs}$	$\mathcal{O}^*_{u u dD2}$	$(ar{d}_p^\dagger i \overleftrightarrow{D}_\mu ar{d}_q^\dagger) (u_r^\dagger ar{\sigma}^\mu u_s)$	(3 , 6)	$1171 \\ 19r1$	$\overline{2}$	1
$p \rightarrow K^{0} \mu^{+}$	0.16		-1	1	-1						12/1	2	
$p \rightarrow K \cdot \nu_r$	0.59	3.2	0	1	±1		$[\mathcal{O}_{ddd}^{V,LL}]^{\square}_{pars}$	\mathcal{O}^*_{dedD1}	$(d_p i \overleftrightarrow{D}_\mu d_q) (e_r^\dagger \bar{\sigma}^\mu d_s)$	(10 , 1)	111r	$\frac{3}{2}$	0
$p \to \bar{K}^0 e^+$	0.10		0	-1	-1	5	- uuu 1pq. 0				121r	l	1
$p \to \bar{K}^0 \mu^+$	0.16		0	-1	-1		VDI				11r1	$\frac{3}{2}$	0
Neutron chan	nels						$[\mathcal{O}_{ddd}^{v,\kappa L}]_{\{pq\}rs}$	\mathcal{O}^*_{dedD2}	$(d_p^{\dagger}iD_{\mu}d_q^{\dagger})(e_r^{\dagger}ar{\sigma}^{\mu}d_s)$	(3 , 6)	12r1	1	1
$n \to \pi^0 \nu_r$	0.11		$\frac{1}{2}$	0	± 1						11r2	1	1
$n o \eta^0 u_r$	0.016		$\frac{1}{2}$	0	± 1						11r1	$\frac{3}{2}$	0
$n \to \pi^- e^+$	0.53	2.0	$-\frac{1}{2}$	0	-1		$[\mathcal{O}_{ddd}^{V,LR}]_{\{pq\}rs}$	\mathcal{O}^*_{dedD3}	$(d_p i \overrightarrow{D}_\mu d_q) (\overline{e}_r \sigma^\mu \overline{d}_s^\dagger)$	$({f 6},{f 3})$	12r1	1	1
$n \to \pi^- \mu^+$	0.35	1.8	$-\frac{1}{2}$	0	-1						11r2	1	1
$n \to \pi^+ e^-$	0.0065		$\frac{3}{2}$	0	1	6	$V_{RR_{1}}$	<i>/</i> 0 *		(1, 10)	111r	$\frac{3}{2}$	0
$n \rightarrow \pi^+ \mu^-$	0.0049		$\frac{3}{2}$	0	1	U	$[\mathcal{O}_{ddd}^{r,sor}]_{pqrs}^{r}$	\mathcal{O}_{dedD4}^{*}	$(d_p^{}iD_\mu d_q^{})(e_r\sigma^\mu d_s^{})$	(1, 10)	121r	1	1
$n \rightarrow K^+ e^-$	0.0032	1.0	1	1	1				1				
$n \to K^+ \mu^-$	0.0057		1	1	1		$\Delta B = -$	$\Delta L =$	- 1				
$n \to K^0 \nu_r$	0.013		0	1	± 1								
$n \to K^- e^+$	0.0017		0	-1	-1		D		 .				
$n \to \bar{K}^0 \nu_r$	0.013		1	-1	± 1		Dimensio)n-/ LE	FI operators g	genera	ted at		

Decays to (anti-)leptons are generated at dimension (6) 7 in the SMEFT

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

dimension-7 in the SMEFT

2005.08013 [56]: Liao, Ma, Wang

 $\cdot G_F \mathcal{A}^{d=6} \sim C_{\text{SMEFT}}^{d=7}$ $\mathcal{A}^{d=7} \sim C_{\text{SMEFT}}^{d=7} \frac{1}{\Lambda}$ $\mathcal{O}_{\bar{l}qdDd} = (L^{\dagger}\bar{\sigma}_{\mu}Q)(\bar{d}^{\dagger}iD^{\mu}\bar{d}^{\dagger})$ $\mathcal{O}_{\bar{e}dddD} = (\bar{e}\sigma_{\mu}\bar{d}^{\dagger})(\bar{d}^{\dagger}iD^{\mu}\bar{d}^{\dagger})$

Direct and indirect methods of calculation roughly agree, huge improvement

- Uncertainties have improved a lot over the past decade!
- Direct method can give lifetimes 2-3x larger

 \Rightarrow 40–70% weaker constraints on the scale of d = 6 coeffs

 \Rightarrow 26–44% weaker constraints on the scale of d = 7 coeffs

 $\alpha =$

 $\beta = 0.0120 \pm 0.0013_{(\text{stat})} \pm 0.0023_{(\text{syst})} \text{ GeV}^3.$

 $\sim 22 \%$ uncertainty

	24ID	3
α	-0.0999(59)	-0.0110
β	0.01020(57)	0.0111

```
Aoki et al. (JLQCD) hep-lat/9911026
Aoki, Dawson, Noaki, Soni hep-lat/0607002
Aoki, Izubuchi, Shintani, Soni 1705.01338
Yoo, et al. 2111.01608
```


We match onto the $B_{X}PT$ using operator symmetries

 $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ $M = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}}\eta \end{pmatrix} \qquad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda^{0}}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda^{0}}{\sqrt{6}} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda^{0} \end{pmatrix} \qquad \begin{bmatrix} \mathcal{O}_{u}^{S} \\ \mathcal{O}_{u}^{S} \\ \mathcal{O}_{d}^{S} \\ \mathcal{O}_{d}^{S} \end{bmatrix}$ $\xi \equiv e^{iM/f_{\pi}} \to L\xi U^{\dagger} = U\xi R^{\dagger}$ $B \rightarrow UBU^{\dagger}$ $[\xi B\xi^{\dagger}\nu_{r}]_{l}^{k} \sim (q_{i}q_{j})(q_{l}\nu_{r})\epsilon^{ijk} - \frac{1}{3}(q_{i}q_{j})(q_{m}\nu_{r})\epsilon^{ijm}\delta_{l}^{k}$ $\xi B \xi \sim (\mathbf{3},\mathbf{3})$ $\supset [\mathcal{O}_{udd}^{S,LL}]_{111r}, \ [\mathcal{O}_{udd}^{S,LL}]_{121r}, \ [\mathcal{O}_{udd}^{S,LL}]_{112r}$ $\xi^{\dagger}B\xi^{\dagger} \sim (\bar{\mathbf{3}},\mathbf{3})$ $\xi B \xi^{\dagger} \sim (\mathbf{8}, \mathbf{1})$ Projection matrix P_{ii} necessary to pick out

component corresponding to single operator

John Gargalionis

 $\xi^{\dagger}B\xi \sim (\mathbf{1},\mathbf{8})$

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Name $[42]$	Operator Flavour		ΔI	Δ
$ [\mathcal{O}_{udd}^{S,LL}]_{111r} \\ [\mathcal{O}_{udd}^{S,LL}]_{121r} \\ [\mathcal{O}_{udd}^{S,LL}]_{112r} $	$(ud)(d u_r)$ $(us)(d u_r)$ $(ud)(s u_r)$	$({f 8},{f 1}) \ ({f 8},{f 1}) \ ({f 8},{f 1}) \ ({f 8},{f 1})$		
$ [\mathcal{O}^{S,LL}_{duu}]_{111r} \\ [\mathcal{O}^{S,LL}_{duu}]_{211r} $	$(du)(ue_r)$ $(su)(ue_r)$	$({f 8},{f 1})\ ({f 8},{f 1})$	$-\frac{1}{2} -1$	
$[\mathcal{O}_{duu}^{S,LR}]_{111r}$ $[\mathcal{O}_{duu}^{S,LR}]_{211r}$	$(du)(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger}) \\ (su)(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger})$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$-\frac{1}{2}$ -1	
$[\mathcal{O}_{duu}^{S,RL}]_{111r}$ $[\mathcal{O}_{duu}^{S,RL}]_{211r}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(ue_r) (\bar{s}^{\dagger}\bar{u}^{\dagger})(ue_r)$	$({f 3},ar{f 3})\ ({f 3},ar{f 3})$	$-\frac{1}{2}$ -1	
$ \begin{split} [\mathcal{O}^{S,RL}_{dud}]_{111r} \\ [\mathcal{O}^{S,RL}_{dud}]_{211r} \\ [\mathcal{O}^{S,RL}_{dud}]_{112r} \end{split} $	$\begin{array}{l} (\bar{d}^{\dagger}\bar{u}^{\dagger})(d\nu_{r})\\ (\bar{s}^{\dagger}\bar{u}^{\dagger})(d\nu_{r})\\ (\bar{d}^{\dagger}\bar{u}^{\dagger})(s\nu_{r}) \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$		
$[\mathcal{O}_{ddu}^{S,RL}]_{[12]1r}$	$(\bar{d}^{\dagger}\bar{s}^{\dagger})(u\nu_r)$	$({f 3},ar{f 3})$	0	
$[\mathcal{O}_{duu}^{S,RR}]_{111r}$ $[\mathcal{O}_{duu}^{S,RR}]_{211r}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger}) (\bar{s}^{\dagger}\bar{u}^{\dagger})(\bar{u}^{\dagger}\bar{e}_{r}^{\dagger})$	$({f 1},{f 8}) \ ({f 1},{f 8})$	$-\frac{1}{2}$ -1	

$$\begin{split} \dot{C}_{duue,prst} &= \left(-4g_3^2 - 2g_1^2\right) C_{duue,prst} - \frac{20}{3}g_1^2 C_{duue,psrt} \\ \dot{C}_{duq\ell,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{11}{6}g_1^2\right) C_{duq\ell,prst} \\ \dot{C}_{qque,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{23}{6}g_1^2\right) C_{qque,prst} \\ dq_{\ell,prst} &= \left(-4g_3^2 - \frac{3}{2}g_1^2\right) C_{qqq\ell,prst} - 4g_2^2 \left(C_{qqq\ell,rpst} + C_{qqq\ell,srpt} + C_{qqq\ell,psrt}\right) \\ dq_{\ell,prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{17}{12}g_1^2 + y_t^2\right) C_{\bar{l}dud\bar{H},prst} - \frac{10}{3}g_1^2 C_{\bar{l}dud\bar{H},prst} \\ ddH,prst &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{13}{12}g_1^2 + y_t^2\right) C_{\bar{l}dud\bar{H},prst} , \\ ddH,prst &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{13}{12}g_1^2 + y_t^2\right) C_{\bar{l}dud\bar{H},prst} , \\ dd\bar{H},prst &= \left(-4g_3^2 - \frac{9}{4}g_2^2 + \frac{11}{12}g_1^2 + y_t^2\right) C_{\bar{e}qd\bar{H},prst} , \end{split}$$

$$\begin{split} \dot{C}_{duue,prst} &= \left(-4g_3^2 - 2g_1^2\right) C_{duue,prst} - \frac{20}{3}g_1^2 C_{duue,psrt} \\ \dot{C}_{duq\ell,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{11}{6}g_1^2\right) C_{duq\ell,prst} \\ \dot{C}_{qque,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{23}{6}g_1^2\right) C_{qque,prst} \\ \dot{C}_{qqq\ell,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{17}{2}g_1^2\right) C_{\bar{q}qq\ell,prst} - 4g_2^2 \left(C_{qqq\ell,rpst} + C_{qqq\ell,srpt} + C_{qqq\ell,psrt}\right) \\ \dot{C}_{\bar{l}dud\bar{H},prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{17}{12}g_1^2 + y_t^2\right) C_{\bar{l}dud\bar{H},prst} - \frac{10}{3}g_1^2 C_{\bar{l}dud\bar{H},ptsr} , \\ \dot{C}_{\bar{l}dddH,prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{13}{12}g_1^2 + y_t^2\right) C_{\bar{l}dud\bar{H},prst} , \\ \dot{C}_{\bar{e}qdd\bar{H},prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 + \frac{11}{12}g_1^2 + y_t^2\right) C_{\bar{e}qdd\bar{H},prst} , \\ \dot{C}_{\bar{l}dqq\bar{H},prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{19}{12}g_1^2 + y_t^2\right) C_{\bar{l}dqq\bar{H},prst} - 3g_2^2 C_{\bar{l}dqq\bar{H},prts} . \end{split}$$

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

John Gargalionis

RGEs

Limits compatible with gauge-coupling unification at the α_2 , α_3 crossing for $c > 10^{-2}$

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

A model with dim-7 proton decay: Low-scale Pati-Salam (1)

• At dimension 5, a set of Weinberg-like operators generate diquark couplings for χ

Field content	J	Number of operators	(\mathcal{O}_X)
$\Phi^\dagger \Phi^\dagger \xi \xi$	0	$n_{\xi}(n_{\xi}+1)/2$ /	
$\Phi^\dagger \chi^\dagger f_L \xi$	0	$n_{\xi}n_f$	L
$\Phi^\dagger \Phi \xi \xi$	0	$n_{\xi}(n_{\xi}+1)/2$	
$\chi^\dagger \chi^\dagger f_L f_L$	0	$n_f(n_f + 1)/2$ /	
$\chi^\dagger \chi^\dagger f_R f_R$	0	$n_f(n_f+1)$	
$\Phi\chi^\dagger f_L \xi$	0	$n_{\xi}n_f$	
$\chi^\dagger \chi \xi \xi$	0	$n_{\xi}(n_{\xi}+1)/2$ /	= ع
$\chi\chi f_L f_L$	4	$n_f(n_f+1)/2$	د
$\chi\chi f_R f_R$	4	$n_f(n_f+1)/2$	sin
$\Phi\Phi\xi\xi$	0	$n_{\xi}(n_{\xi}+1)/2$	

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

JG, Dutka, arXiv:2211.02054

antisymmetry $_{X})_{pq} = f_{X}^{\alpha i} f_{X}^{\beta j} \chi^{\gamma k} \chi^{\delta l} \epsilon_{\alpha \beta \gamma \delta} \epsilon_{ij} \epsilon_{kl}$ $\downarrow \langle \chi \rangle$ $\mathscr{C}_{\chi^d} \supset \frac{m_u}{v_R} \cdot \bar{\nu} \chi^{d\dagger} d_R + \sum_{X \in \{L,R\}} \frac{C_X v_R}{\sqrt{2}\Lambda} \cdot d_X u_X \chi^d$ + h.c. $= \cos \theta N_L - \sin \theta \nu + \mathcal{O}(\mu/v_R) N_R^c$ $\theta \approx \frac{m_u}{m_u}$ $|y_R v_R|$

Balanced

For now, just one generation

$$f_L = \begin{pmatrix} u_L & \nu_L \\ d_L & e_L \end{pmatrix} \sim (\mathbf{4}, \mathbf{2}, \mathbf{1})$$

$$f_R = \begin{pmatrix} u_R & \nu_R \\ d_R & e_R \end{pmatrix} \sim (\mathbf{4}, \mathbf{1}, \mathbf{2})$$

$$\chi = \begin{pmatrix} \chi^u & \chi^0 \\ \chi^d & \chi^- \end{pmatrix} \sim (\mathbf{4}, \mathbf{1}, \mathbf{2})$$

$$\xi \sim (\mathbf{1}, \mathbf{1}, \mathbf{1}) \quad \Phi \sim (\mathbf{1}, \mathbf{2}, \mathbf{2})$$

$$SU(4) \otimes SU(2)_L \otimes SU(2)_R$$

$$\downarrow \langle \chi \rangle$$

$$SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$$

A model with dim-7 proton decay: Low-scale Pati-Salam (2)

Integrating out χ^d from \mathscr{L}_{γ^d} gives two B - L = 2 dimension-6 operators in the WET

$$\mathscr{L}_{\chi^{d}} \supset \frac{m_{u}}{v_{R}} \cdot \bar{\nu}\chi^{d\dagger} d_{R} + \sum_{X \in \{L,R\}} \frac{C_{X}v_{R}}{\sqrt{2}\Lambda} \cdot d_{X}u_{X}\chi^{d} - \mathcal{L}_{eff} \supset \sum_{X} \frac{C_{X}}{\Lambda} \frac{v_{R}}{\sqrt{2}} \frac{v_{R}}{M_{\chi^{d}}^{2}} \frac{v_{R}\sin\theta}{M_{\chi^{d}}^{2}} \cdot (u_{X}d_{X})(\bar{\nu}_{L}d_{R}) + h$$
$$\sim \sum_{X} \frac{C_{X}}{\sqrt{2}} \frac{m_{u}}{\Lambda v_{R}^{2}} \cdot (u_{X}d_{X})(\bar{\nu}_{L}d_{R}) + h.c. - h$$

- Dimension-7 operators generated in the SMEFT: $(\bar{L}d_R)(u_R d_R)\tilde{H}$ and $(\bar{L}d_R)(QQ)\tilde{H}$
- Predict the dominant decay modes: $n \to \pi^0 \nu, \, p \to \pi^+ \nu$

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

JG, Dutka, arXiv:2211.02054

Dec 09, 2024

31

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Image credit: https://higgstan.com/protondecay/

John Gargalionis

Standard Model and Beyond & Gordon Godfrey Workshop, Sydney

Image credit: https://higgstan.com/protondecay/

