Astrometry, gravitational waves and synergies with Pulsar Timing Arrays

The International Joint Workshop on the Standard Model and Beyond 2024

Ameek Malhotra

Based on work in progress with Marisol Cruz, Gianmassimo Tasinato and Ivonne Zavala

PTA SGWB detection SGWB and Astrometry Forecasts with PTA + Astrometry Summary

Stochastic Gravitational Wave Background

Independent sources which are not individually resolvable lead to an incoherent superposition, large number of such sources -> SGWB

SGWB detection

The cross-correlation method

Suppose we have the data from two different detectors

Now, if we build the cross-correlation

$$C_{IJ} \equiv d_I d_J = h_I h_J$$
$$\langle C_{IJ} \rangle = \langle h_I h_J \rangle + \langle \eta \rangle$$

 $d_I = h_I + n_I$ $d_J = h_J + n_J$

 $+ n_I h_J + n_J h_I + n_I n_J$ $n_I h_J + n_J h_I \rangle + \langle n_I n_J \rangle$

SGWB and PTAs

GW induce correlated deviations from expected time of arrival across pulsars

 $\langle d_I(f) d_J(f) \rangle \propto \gamma_{IJ}(f) S_h(f)$

Geometric factor that depends on the relative positions of the 2 pulsars

SGWB detection

Overlap function: Pulsar Timing

The Hellings-Downs curve: PTA response to isotropic SGWB

$$\gamma(\theta_{ij}) = 1 + \frac{\cos \theta_{ij}}{3} + 2(1 - \cos \theta_{ij}) \ln \left(\frac{1 - \cos \theta_{ij}}{2}\right)$$

News from PTAs

Strong evidence for SGWB detected by NANOGrav, EPTA, PPTA, InPTA, CPTA

HD correlations detected with ~ $2-4\sigma$ significance

IPTA joint analysis, arxiv: 2309.00693

6

$$S_h(f) = \frac{A^2}{2f} \left(\frac{f}{f_{\text{ref}}}\right)^{2\alpha}, \quad \gamma = 3 - 2\alpha$$

8

What comes next?

Image: <u>GWplotter.com</u>

What comes next?

Image: <u>GWplotter.com</u>

What comes next?

Image: <u>GWplotter.com</u>

Precision astrometry with a large number of stars as a SGWB detector

[see Book, Flanagan (2010) for a review]

Gaia has $N \sim 10^9$ observed over 10 years with $\mathcal{O}(mas)$ precision. Already used to put constraints on low-frequency SGWB [Darling et al. 2018; Aoyama et al. 2021; Jaraba et al. (2023)]

More Gaia data is coming in the next few years + future experiments (Roman, Theia...)

Bellido et al. 2021]

Forecasts for Theia $\mathcal{O}(10^{-10})$, much better angular resolution and lot more stars [J. García-

GW induced deflection

GWs affect the observed position of the star

For distant sc

 $\delta n^{i}(t, \vec{n}) = \mathcal{R}_{ikl}(\vec{n}, \vec{p}) h_{ij}(t)|_{\text{earth}}$

purces,
$$D \gg \lambda_{\text{GW}}$$

, $\mathcal{R}_{ikl}(\vec{n}, \vec{p}) = \frac{n_k}{2} \left[\frac{(n_i + p_i)n_l}{1 + \vec{n} \cdot \vec{p}} - \delta_{il} \right]$

[Book, Flanagan (2010)]

Correlated deflections

SGWB PSD

 $\langle \delta n^i \delta q^j \rangle \propto \int df \frac{S_h(f)}{S_h(f)} \frac{H_{ij}^{(0)}(\vec{n},\vec{q})}{H_{ij}^{(0)}(\vec{n},\vec{q})}$

Geometry dependent correlation

$$H_{ij}^{(0)}(\vec{n},\vec{q}) = \frac{\pi}{3(1-y)^2} \left(1 - 8y + 7y^2 - 6y^2 \ln q\right)$$
$$\times \left[(2-2y)\delta_{ij} - n_i n_j - q_i q_j - q_i - q_i$$

$$y \equiv \frac{1 - \vec{n} \cdot \vec{q}}{2}$$

Cross-correlations

The angular deflections and timing residuals induced by the SGWB are correlated

$$\frac{y)n_i - x_i}{(1 - y)} \left(2y - 2y^2 + 3y^2 \ln(y)\right)$$

Cross-correlations

The angular deflections and timing residuals induced by the SGWB are correlated

$$\frac{y)n_i - x_i}{(1 - y)} \left(2y - 2y^2 + 3y^2 \ln(y) \right)$$

Can cross-correlating Astrometry with PTA help?

The setup

Forecasts with PTA at current sensitivity precision and 10^6 stars.

Joint Gaussian likelihood in the timing residuals and angular deflections.

 $-\ln \mathcal{L} \sim (\delta t, \delta \vec{n}) \mathcal{C}^{-1} (\delta t, \delta \vec{n})^T$

Forecasts with PTA at current sensitivity and an astrometric survey with 0.01 mas

Power-law

~10 % improvement over current PTA constraints

Dipole anisotropy

Minimum detectable dipole anisotropy relative to monopole ~ 0.05.

Current PTA level ~ 0.1

Summary

PTAs will gather further evidence for the SGWB over the next few years

PTAs will gather further evidence for the SGWB over the next few years Astrometry offers a complementary probe of SGWB in the low-frequency range

PTAs will gather further evidence for the SGWB over the next few years

Astrometry offers a complementary probe of SGWB in the low-frequency range

SGWB

- Cross-correlating PTA and Astrometry data can provide tighter constraints on the

PTAs will gather further evidence for the SGWB over the next few years

Astrometry offers a complementary probe of SGWB in the low-frequency range

SGWB

Future work: how to implement this in practice?

- Cross-correlating PTA and Astrometry data can provide tighter constraints on the

