Radiation Tolerant RISC-V processor and SoC platform

Implementing DRD7: an R&D Collaboration on Electronics and On-detector Processing.2nd workshop25 September 2023

Kostas Kloukinas

Project intentions

- Rad-Tol RISC-V based System-on-Chip design
- Participating institues, as of today (in order of presentations)
 - CERN
 - KU LEUVEN
 - Fachhochschule Dortmund
 - UK Consortium

EP-R&D WP5.2 Rad-Tol SoC Ecosystem activity

- Motivation
 - Tackle design complexity in future experiments
 - Control development cost on advanced nodes
 - Facilitate on-detector "intelligence"
 - Enable reconfigurable, retargetable FE ASICs
- Propose a SoC ASIC design methodology
 - Introduce an abstract design methodology
 - Develop <u>reusable IP blocks</u>
 - <u>Standardized interconnects</u> for IP blocks
 - Replace state machines with a control processor (RISC-V based)
 - Programmable, flexible logic blocks (SoC Ecosystem, cores, eFPGA, NoCs)
 - Enhance Hierarchical Digital Implementation and Verifications

- SoCMake
 - SoC generator tool
 - SystemRDL language to automatize the generation of:
 - Hardware design
 - Software toolchain
 - Verification platform
 - Documentation
 - Generate custom SoCs
 - Rapid SoC prototyping
 - Work in progress

EP R&D

Boot Scrubber I₂C **Demonstrator** TMR FF Bootloader TMR Memory architecture PicoRV32 **SRAM** First ASIC prototype NMT Focus on radiation tolerance testability Debug Unit NMI2APB Limited set of functionalities SEU Bridge I₂C Counters Slave APB-RT I2C Timer GPIO UART SPI Master Alessandro Caratelli Marco Andorno Anvesh Nookala Davide Ceresa Risto Pejasinovitc

P R&D

Timeline

- SoC activity started in 2021, during EP R&D phase I
- Approved to continue in phase II, for at least four more years

Start of SoC activity EP R&D* FP R&D EP R&D Preparation & Approval Implementation (initial 5-yr programme & budget 2018 2019 2020 2021 2022 2023 2024 2025 2026 ... Preparation Gradual implementation ECFA Roadmap Discussions & Approval

Scope

- Open platform for Rad-Tol SoC ASIC design
- SoC & core architecture, Verification, Implementation

Resources

1 fellow, 2 students, 3 part-time staff

KU LEUVEN

DRD7 Workshop Radiation Tolerant RISC-V Processors

Levi Mariën Electronic Circuits and Systems (ESAT) Advanced Integrated Sensing Lab (ADVISE)

Motivation behind our research

- Spatial redundancy techniques
 - TMR, DMR, dual lockstep systems, ...
- Simple to understand
- Reliability failure reduces by orders of magnitude
- Can be automatized

- Large area and power overhead (> 2x/3x) difficult to implement (RTL
- and physical constraints)

- Radiation hardening by software techniques
 - Instruction replay or checkpoint recovery
- Low area overhead
- Low critical path delay overhead
- Can be fully implemented in software
- Significally complicates the software stack
- Performance loss (lost cycles)
- Memory requirement for checkpoint recovery

- Pipeline rollback
 - Register encoding/decoding
 - · Pipeline rollback when non-recoverable error occurs
 - Low area overhead
 - Can mitigate SETs and SEUs
- Increases critical path delay
 - Latency penalty when rollback
- Complex to implement

In-situ SEE error detection and correction

- Single-Event Effect (SEE) error detection
 - Double sampling error detection flip-flop
 - Parallel error detection flip-flop
 - · Test chip created
- Single-Event Effect (SEE) error correction
 - Fully configurable

$\sigma ~({\rm cm}^2)$	Parallel EDFF	Double Sampling EDFF		
σ_{SET}	1.6x10 ⁻⁸	N/A		
σ_{SEU}	7.4x10 ⁻⁸	4.6x10 ⁻⁸		
σ_{data}	1.3x10 ⁻⁸	1.1×10^{-8}		
False Negative	0.12×10^{-8}	0		
False Positive	7.9x10 ⁻⁸	3.5x10 ⁻⁸		

	EDFF 1	EDFF 2	DFF	TMR	Glitch
Static Power (nW)	5.5	3.4	1.4	11.1	5.2
Dynamic Power (fJ)	4.3	4.9	1.6	8.4	5.5
Propagation Delay (ps)	65.5	65.4	62.5	103	568
Area (μm^2)	12.3	8.9	3.1	10.1	10.8

2023

SEE mitigation in DNN accelerators

- <u>Memories</u>: 50-70% area
 - SEC-DED code to harden
- Data path: 30-50% area
 - Software/hardware mitigation
 - Software-based DNN tolerance
 - Hardware checker neurons
- Control logic: 2-5% area
 - TMR

DNN accelerator

Long term goal

- Any RISC-V core can be targeted
 - Hell, any design for that matter
- Fueled by FuseSoC and Edalize
 - Achieving the power of vendor and tool independence
- In-Situ SEE error detection and correction library
- SEU inject test platform
 - In simulation testing
 - At runtime (FPGA) testing
 - Formal verification?

(AXI)

Contributions and resources

- Contributions
 - Rad-hard RISC-V SoC development on TSMC 28nm HPC+ or 22nm FDSOI technology
- Resources
 - 5 person team for 3 years
 - 3 persons already funded
 - 3 * 3FTE, resources already available
 - 2 persons to be funded
 - 2 * 3 FTE, resources considering asking

A radhard RISC-V micorocontroller implementation

25.09.2023

2nd DRD7 workshop Michael Karagounis

Fachhochschule Dortmund University of Applied Sciences and Arts

Motivation

- First thoughts about the usefulness of a radiation-hard μC arose during the development of the MOPS (Monitoring of Pixel) chip
 - MOPS digitizes pixel module voltage and temperature and communicates via CANOpen
 - CANOpen is usually implemented in software but was implemented in hardware for MOPS
- Many custom ASICs have a similar structure:

Data Acquisition Data Processing Data Transfer

- Design of hardwired custom ASIC is complex and time consuming
 - Big verification effort
 - Bugfixes detected in silicon need redesign and new production cycle
- Adaptation to new projects is difficult
 - hardwired logic needs full redesign
- Idea: replace internal data processing logic with radiation-hard RISC-V core
 - Adaptation to new application and bugfixes via software updates

Design of TMR protected RISC-V microcontroller

University of Applied Sciences and Arts

Fachhochschule

Dortmund

- Fully TMR protected RV32-IMC Core designed in TSMC 65nm
 - 3 stage pipeline with multiplication and compressed instruction set extension
- 1.2V Core & I/O supply and 50 MHz clock

Read SRAM

Row

Fachhochschule Dortmund

TID & SEE Characterization

- University of Applied Sciences and Arts
- X-ray irrdiation at -20°C
- TID of 1 Grad reached
- SRAM leakage current main driver of increased current consumption

• Heavy ion irradiation for study of SEE

- cross section of corrected SEUs extracted by SEU counter circuit
- SEFI cross section is three orders of magnitude smaller than SEU cross section

A. Walsemann, M. Karagounis, A. Stanitzki, D. Tutsch, **A radiation hard RISC-V microprocessor for high-energy physics applications,** Nuclear Instruments and Methods in Physics Research Section A, vol. 1056, p. 168633, 2023

- Overall project goal is an <u>open-source Zero SEFI microcontroller</u> at LHC inner layer SEE rates
 - Are there additional architecture level protection measures necessary apart from TMR?
- Development of a well-elaborated verification suite
 - Verification of functionality and TMR implementation
 - study of cycle accurate golden models and/or virtual prototypes
- Improve diagnose capability during SEE radiation testing
 - Not only detect SEFIs but also cause of SEFIs
- Resources
 - 0.67 FTE (PhD student) for 1+3 years
 - Funds for Submission of chip prototypes

UK Consortium Contribution

- UK (STFC) Consortia
 - Royal Holloway, Birmingham, Warwick, Bristol, Manchester, RAL.
- Motivation
 - Develop common interface ASIC to couple a range of specialised FE ASICs to a common industry-standard offdetector interface.
- Plans for DRD7.2.b
 - Study/design of processor
 - Verification/testing of cores
 - Evaluate SoC platform
 - Software Ecosystem
- Contribution
 - Q4 2023: requests for funds
 - >1 FTE for 4 years

Proposed common interface ASIC for detector

readout, timing, and control

Towards a Project Proposal

- Develop a Rad-Tol RISC-V based SoC ASIC design platform for HEP experiments
 - Standardized Architectures
 - Implementation Methodologies
 - Verification Methodologies
 - IP block Repository
 - Propose standardized solutions to the HEP community
- Establish regular meetings
 - Kick-off meeting in late October 2023
 - Identify areas of expertise
 - Define fields of contribution
- Finalize Project Proposal

