

Cooling: Cooling plates

On behalf of the 7.4c collaborators

7.4: EXTREME ENVIRONMENT AND LONGEVITY

IMPLEMENTING DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

Oscar Augusto de Aguiar Francisco (The University of Manchester) oscar.augusto@cern.ch

Introduction

- <u>No single solution for the cooling structure nor coolant</u>
 - Different material budget constraints, power dissipation, ...
- Three (sub-)projects will be described today:
 - Ceramics cooling plate (UoM)
 - Microchannel cooling and active interconnection developments (CNM, DESY, IFIC)
 - Microchannel cooling manufacturing via thermocompression (CPPM)
- More applications and contributors are welcome
- Potential future overlap with the DRD8:
 - DRD7.4c "covers the cooling structures in direct contact with electronics"
 - Cooling plates are included (e.g.: coolant R&D not included)

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

Ceramics

- Potential collaboration with Fraunhofer IKTS (Germany)
- Different base materials: YSZ, Al_2O_3 , AlN, ... including SiC
- Manufacturing based on several layers
- <u>Why?</u>
 - Robustness, reliability, stability in ultra-high-vacuum
 - Possible to embed conductive layers in between ceramics layers and metalize the surface
 - Potential to integrate electronics or high conductivity elements
 - Mechanically robust and compatible with high ultra vacuum

©Fraunhofer IKTS

MANCHESTER

Ceramics

- Experience with fluidic applications
- First prototype
 - Initial channel with $70 \mu m$ width (restrictions)
 - Channels height $100 \mu m$
 - Overall dimensions: $40 \times 60 \text{mm}^2$
 - Based on alumina (Al_2O_3)
 - Possible to move to SiC afterwards
- Encouraging results from FEA studies
 - Geometry based on the VELO Upgrade I design (5 mm overhang)
 - For $2W/cm^2$, $\Delta T \sim 9^\circ C$
- Goal: Manufacture and validate initial prototypes in the coming years to high pressure, leak tightness and cooling performance
 - Benchmark: LHCb VELO Upgrade 2 requirements (High pressure 186 bar, leak tight (vacuum operation) and excellent thermal performance)

SNAKEI based design to optimize printing parameters/test feasibility

The University of Manchester

©Fraunhofer IKTS

Simplified FEA focusing on the 5 mm overhang. Substrate in alumina and heat conduction on one side of the cooling plate and Stycast (100um).

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

Microchannel cooling and active interconnection developments

- Miguel Ullán (IMB-CNM, CSIC), Carlos Mariñas (IFIC-UV, CSIC), Marcel Vos (IFIC, CSIC-UV), Ingrid Gregor (DESY), Sergio Díez (DESY)
- In the past, we developed a technology of microchannel cooling for High Energy Physics detectors
 - N. Flaschel, et al. "Thermal and hydrodynamic studies for micro-channel cooling for large area silicon sensors in high energy physics experiments", NIMA, vol. 863, pp. 26-34, 2017.

http://dx.doi.org/10.1016/j.nima.2017.05.003

 Ph.D Thesis: Micro-channel Cooling For Silicon Detectors. Nils Flaschel. Hamburg University. 2017

Microchannel cooling and active interconnection developments

- Technological process for buried micro-channels at IMB-CNM
- Creation of microchannels:
 - Deep Reactive ion etching (DRIE)
- Buried micro-channels:
 - Wafer bonding

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

Microchannel cooling and active interconnection developments

- Previous results on fluidic and thermal tests
- Laminar flow
- Good agreement with simulation
- Thermal homogeneity across the sample,

< ±1 °C (for lowest flow rate)

Microchannel cooling and active interconnection developments

• Main Objective I: Integration of microchannels in silicon interposers with integrated signal and power routing (RDL)

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

Main Objective II: Full integration of the sensor (CMOS technology) with the microchannel cooling in a single silicon piece

- Full integration of DMAPS chip with the microchannels in a single monolithic piece
- Post-processing at wafer level with a CMOS compatible process
- Following the "post-processing" technique developed previously
- Additional technological developments
 - ✓ Low temperature (350°C) anodic bonding
 - Microchannels created on glass substrates (isotropic wet etching)
 - Eutectic and/or fusion bonding
 - Improve post-processing compatibility
 - Full demonstrator

R&D to develop a low-cost micro-channel production process

As an alternative to the complicated and costly direct Si/Si bonding, investigate bonding techniques with intermediate thin layers:

•Anodic bonding with glass (BF33)

 \circ Thermocompression with gold

Anodic bonding

Bargiel et al., Micromachines 2023, 14, 1297

Thermocompression

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

Bonding strength evaluated through a series of destructive pressure burst tests, recording the maximum pressure reached in microfluidic test structures before breakage (à la LHCb)

⇒ Test chips produced both with the anodic and with the thermocompression bondings can sustain very high pressure

 \Rightarrow Focus on thermocompression as

- It generally allows to reach higher maximal pressures
- It is a widespread technique available
 in most clean room facilities

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

Bargiel et al., Micromachines 2023, 14, 1297

- Towards the bonding of a connector using thermocompression process:
 - Investigate chip level bonding replacing the bonder with a mechanical press at atmospheric pressure outside the clean room
 - Two configurations tested:
 -Si/Si bonding (for reference)
 -Si/Invar
 - → Both types can sustain high pressure
 - → Proof of concept validated!

2023/03/15

- Replace the mechanical press with an hyperbar chamber
 - Allow to reach very high pressure
 - ≥ 400 bar in chamber
 - Force applied in bonder limited to 40kN
 - (i.e. 5.1MPa for 4" wafer, 2.3MPa for 6" wafer)
 - Pressure more uniform
 - Less stress applied on wafer
 - Bonding at room temperature
 - Can adapt various geometries
- Test wafer bonding with fixed width pressure test structures (w=850µm)
- \Rightarrow All samples sustained very high pressure
- ⇒ All breakage occurred in the silicon (i.e. bonding has held)
- \Rightarrow Proof of concept validated !

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

R&D to develop low-cost micro-channel production process is being pursued at CPPM

Currently focusing on the bonding process, very appealing technique identified:

- "Hyperbar" bonding with thin intermediate Au layers
- Can be used to bond wafer
- Bonding of connector in hyperbar chamber being investigated

Goal is a functional prototype in the coming years

Part of a global R&T effort in CNRS/IN2P3, shared among 3 French laboratories and including developments on boiling flow modelling and testing.

Conclusion

- Microchannel cooling and active interconnection developments (CNM, DESY, IFIC)
 - Aiming to bring more functionalities to the cooling plate
 - Redistribution layer could be an interesting solution for ASICs with through-silicon vias
 - CMOS compatible process to integrate the cooling to the sensor
- Microchannel cooling manufacturing via thermocompression (CPPM)
 - Main motivation to reduce the manufacturing cost
 - Very promising results "hyperbar" chamber (resistance to high pressure)
 - Techniques developed can be also explored for integration (chips and connecturization)

• Ceramics

- It has also the potential to include electronic features
- Fully validated initial prototypes in the coming years to high pressure, leak tightness and cooling performance in the following years
- LHCb VELO Upgrade 2 as benchmark requirements (High pressure, $\rm CO_2$ evaporative cooling)

Backup slides

Future facilities

5 D&D Thomas in algotranias

5 R&D	Future facilities Themes in electronics		Sp ₅ fited taget	PIP-ILLE	41/CE 3 DUNE LHCb 6 LSg	EL CUS (2 LSG)	HC Maching	FCC. Se (ninetry)	CLIC Marking detectors	FCC.ht linities	Muon cominital des
		DRDT	< 203	0	2030-2	035	2035- 2040	2040	-2045	> 2045	
Data density	High data rate ASICs and systems	7.1							•	•	
	New link technologies (fibre, wireless, wireline)	7.1					•	• (•	•
	Power and readout efficiency	7.1	• • (•	• •	•			
Intelligence on the detector	Front-end programmability, modularity and configurability	7.2			×						
	Intelligent power management	7.2					••			•	
	Advanced data reduction techniques (ML/AI)	7.2									
4D- techniques	High-performance sampling (TDCs, ADCs)	7.3									
	High precision timing distribution	7.3				••					
	Novel on-chip architectures Radiation hardness	7.3									
Extreme environments and longevity	Cryogenic temperatures	7.4									
	Reliability, fault tolerance, detector control	7.4									
	Cooling	7.4				•					ŏ
Emerging technologies	Novel microelectronic technologies, devices, materials	7.5				-		0			ŏ
	Silicon photonics	7.5						Ŏ) i	ŏ	ŏ
	3D-integration and high-density interconnects	7.5						Ŏ		ŏ	Ŏ
	Keeping pace with, adapting and interfacing to COTS	7.5									

* LHCb Velo

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

