

DRD 7.6b – Common Access to 3D and Advanced Integration

Fachhochschule Dortmund

University of Applied Sciences and Arts

M. Caselle (KIT)

DRD7.6 – Complex Imaging ASICs and Technologies

DRD7 Workshop 25-26 September, 2023 (CERN)

European Committee for Future Accelerators

DRD7.6

DRD 7.1 \Leftrightarrow DRD 7.6

Common Access to 3D and Advanced Integration

Strategic Goal

- Provide/facilitate the access to advanced chiplet and 3D integration technologies
- Integration of SiPh chip and optical fibers on detector module
 - Reduce development costs and production time by in-house facilities

Performance Targets

- Shared competences/experiences and infrastructures/processes
- Built-up and maintain capability for wafer stacking/multi-tier, chiplet and SiPh integration

Supported Technologies

- TSV-last and redistribution layer (RDL) technologies
- Chiplet, 3D/2.5D integration, W2W, C2W and C2C bonding w/wo solder
- Integration of monolithic/hybrid PIC on detector

European Committee for Future Accelerators,

DRD7.6

Common Access to 3D and Advanced Integration

HLL – Semiconductor Laboratory of the Max Planck Society

Courtesy: Laci Andricek and Jelena Ninkovic

- Core competence
 - Experiment and physics driven development, design, and fabrication of silicon sensors and full camera systems
- Recent and current lighthouse projects
 - Belle II PXD, Athena WFI, TRISTAN, EDET 80k and many more
- Sensor portfolio
 - APS (DEPFET), pnCCD, SDD, Avalanche devices (LGAD), passive pixels, strips ...
- Facilities & technologies
 - Currently 1000 m² clean room, from 2024 on 1500 m² up to ISO3
 - Full process line for 150 mm wafers, to be extended to 200 mm
 - Post-processing and interconnection line (RDL, UBM, flip-chip..)
 - Extension towards 3D/2.5D integration and wafer level packaging

From end 2023 @ Research Campus Garching

pnCDD on 150 mm wafer

DRD7 Workshop 25-26 September, 2023 (CERN)

M. Caselle (KIT)

DRD7.6 – Complex Imaging ASICs and Technologies

European Committee for Future Accelerators,

Cryogenic and Semiconductor facility at KIT

DRD7.6

Facilities

- Dedicated clean room for bump-bonding and detector module production
- New clean room, 1000 m² from 2025/26 for the production of metallic magnetic calorimeters (MMC) / cryo detectors, packaging and optical lab

Technologies

- Fine-pitch bump-bonding technology based on stud ball bumping
 - Low-cost, fast-deposition, short setup time ideal for single die (i.e. fast prototype R&D)
- 2D bumping technology for HEP, photon sciences and space detectors
- Chiplet, active/passive interposer technologies for detectors
- Wafer level (ICP-RIE, ICPECVD, laser-lithography, UHV-Sputtering, etc.)
- Integration of silicon photonic chips on detector
- Integration of optical fiber on PIC by edge and grating coupling

Metal Magnetic Calorimeter detector

Courtesy: Marc Schneider

DRD7 Workshop 25-26 September, 2023 (CERN)

ន

European Committee for Future Accelerators

UNIVERSITÉ DE SHERBROOKE Université de Sherbrooke (QC, Canada) & TRIUMF (BC, Canada)

DRD7.6

Technologies required for a complete Photon detection module:

- <u>Teledyne-DALSA</u> (Bromont, QC, Canada): Single Photon Avalanche Diode array and 3D integration
- TSMC (or other foundry): CMOS
- Fraunhofer IZM: Silicon interposer
- <u>AMF</u> : Photonic chip
- University of British Columbia and others: Photonic wire bonding

Currently relying on <u>CMC</u> for chip manufacturing

Courtesy: Fabrice Retiere, Serge Charlebois

DRD7.6 – Complex Imaging ASICs and Technologies

DRD7 Workshop 25-26 September, 2023 (CERN)

Common Access to 3D and

Advanced Integration

ECFA

European Committee for Future Accelerators,

Fachhochschule Dortmund

FachHochschule Dortmund

- FH Dortmund is interested in advanced integration techniques with application to
 - power management
 - In-detector intelligence

Courtesy: Michael Karagounis

DRD7.6

- The following integration techniques will be studied in detail
 - 1. Passives on chip/die

A power management IC will be equipped with capacitors and/or inductors

- 2. Silicon-Interposer based 2.5D integration (→ Kostas's talk) A radhard monitoring IC will be connected to radhard RISC-V microcontroller _Γ
- 3. Silicon-Interposer based 3D integration (→ Michael's talk) A state of the art monolithic/hybrid pixel chip will be connected to an FPGA
- 4. FH Dortmund will contribute to mechanical and electrical test & characterization, mechanical & thermal stress, *signal* integrity, ...

Common Access to 3D and Advanced Integration

Monitoring of Pixel System (MOPS)

Common Access to 3D and Advanced Integration

Impact

- Providing the access via research centers
 - Enable low-cost and direct investigation on critical technologies
 - Funding including personnel confirmed, commitment with 5.5 FTE/year
- Providing the access via vendors / services (DALSA, Ziptronix/Tessara, EVGroup, IZM, and more...)
- Supporting the mechanical and electrical characterizations of chiplet and wafer stacking technologies and integration with SiPh device

→ Get in touch if you would like to join the list

Thank you for your attention

DRD7.6

Common Access to 3D and Advanced Integration

Institutes involved

Institute	Infrastructure	Expertise/Competence
HLL-MPG	New clean room for detector	DRIE, PECVD and electroplating Cu deposition, direct
	production equipped with full 200	wafer -bonding technologies, 2.5 D integration
	mm wafer process	including Si interposer with three metal layers, RDL in
		Cu, and fine-pitch flip-chip
Uni Sherbrooke	3D integration by Teledyne DALSA	AlGe eutectic bonding (435°C) at 150mm and 200mm
		wafer size (DALSA). Cu-Cu hybrid bonding
		(Ziptronix/Tessara) on 200 mm wafer
FH Dortmund	Thermostream climate device	Analog, Digital, Mixed-Signal Design. Validation of chips
		and modules
KIT	Dedicated clean room for detector	Flip-chip, 2.5 D technology, Au-stud bumping, SiPh
	production	design and integration with detectors