Radiation Hard embedded FPGA – Programmable Logic Array IP

2nd DRD7 Workshop CERN

Michael Karagounis

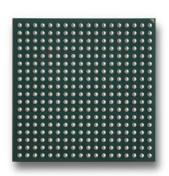
Fachhochschule Dortmund University of Applied Sciences and Arts

Motivation

- State of the art chip-design methodology in HEP is based on hardwired non-programmable logic
 - Advantage
 - optimized hardware for specific application case
 - High resource efficiency in terms of power and area consumption
 - Disadvantage
 - no flexibility
 - bug fixes require costly design iteration
 - reuse of chips in different projects and applications difficult
- Embedded FPGA / Programmable Logic Array IP
 - allow reprogramming/reconfiguration of logic for bugfixes and project adaption

Fachhochschule University of Applied Sciences and Arts

Collaboration Partners & Ressources


- Imperial College London, Andrew Rose
 - 1 FTE, 1 MPW ASIC production
- FH Dortmund, Michael Karagounis
 - 0.5 FTE 2024-2027, 1 Mini-Asic MPW production
 - BMBF (applied, evaluation is still pending)
 - 0.5 FTE 2024-2025, 2 Mini-ASIC MPW production

FHDO FPGA Development Background

- Collaborating with Cologne Chip AG in design and characterization of the Gatemate FPGA
 - Design is supported by EU (IPCEI) Important Projects of Common European Interest

Logic Cells	20,480 CPE correspond to * 20,480 8-Input-LUT trees or * 40,960 4-Input-LUT trees with * 40,960 FF/Latches
Block RAM	Total 1,280 Kb 20Kb blocks: 64 40Kb blocks: 32
PLLs	4
SerDes 5 Gb/s	1
I/Os	single-ended: 162 differential: 81

1.2V to 2.5V

SRAM based FPGA in Globalfoundries 28 nm CMOS

radiation characterization in cooperation with CERN, Salvaore Danzeca & Rudy Ferraro

design and implementation of innovative architectures in TSMC 7 nm

Plans

FHDO

- Study OpenFPGA and/or FABulous framework
- XML-to-Prototype Flow
 - FPGA architecture is described in XML
 - Backend flow creates "production ready" layouts
- FABulous offers partial reconfiguration
- Add radiation hardening features
 - Error Detection & Correction in the Configuration Memory
 - Scrubbing
 - Reconfiguration
- Imperial
 - Support either Logic Array IP from industrial partner or develop own IP
 - Develop software & infrastructure for synthesis and mapping of user-code

Status

- Project has been put on hold by steering committee
- Call for participation of additional interested institutes