REAL-TIME ANALYSIS FOR SCIENCE AND INDUSTRY

ESR9: Real-time analysis for Dark Photons search in LHCb and smart vehicles

SMA HER

Yearly Meeting 2023, 28/11/2023

Carlos Cocha

Outline

About me Training activities Project Results

About me

Ambato city and Chimborazo mountain (closest point to sun)

Quito, latitude 0°0'0'

SMAR HEP

Heidelberg

SCIENCE AND INDUSTRY

- Born in a small town called Ambato near Quito.
- I love the computing and Experimental Particle Physics.
- BSc in Ecuador (Yachay Tech university)
- Master in Italy (University of Padova)
- PhD at Heidelberg searching for dark photons.
- My major hobbies are:
 - Climbing ("cordillera de los Andes")
 - **Chess** (chess.com user: carlos_cocha)
 - ✤Football
 - Enjoying Germany (castles, sausages, bread, beer, bureaucracy ...)

Training activities

SMARTHEP Training activities

2022

REAL-TIME ANALYSIS FOR SCIENCE AND INDUSTRY

- Oct 6 Oct 7 <u>Annual meeting of the German LHCb groups at Physikalisches Institut Heidelberg</u>
- Oct 10 Oct 13 <u>49th Heidelberg Physics Graduate Days at Physikalisches Institut Heidelberg</u>
- Nov 21 Nov 25 <u>SMARTHEP kick-off at the University of Manchester</u>
- Nov 28 Dec 2 <u>LHCb Starterkit 2022 at CERN</u>

2023

- Jan 09 Jan 10 <u>Mid-term check meeting with the Project Officer</u>
- Jan 10 Jan 13 <u>SMARTHEP School on Collider Physics and Machine Learning at UniGe</u>
- Mar 06 Mar 07 First CHARM WG PhD days 2023
- Mar 15 Mar 17 <u>Flavour-Workshop Neckarzimmern</u>
- April 11-14 <u>50th Heidelberg Physics Graduate Days</u>
- June 11 June 17 <u>1st HGSFP Summerschool 2023</u>
- June 25 June 28 <u>Python software in HEP (PyHEP)</u>
- Aug 20 Sep 02 <u>CERN School of Computing</u>
- Oct 5 Oct 6 <u>Annual meeting of the German LHCb groups at Physikalisches Institut Heidelberg</u>
- Oct 9 Oct 13 <u>51st Heidelberg Physics Graduate Days</u>

ESR9 Project

ESR9 Project

Minimal Dark sector model

The nature of dark matter (~25% of matter) is still unknown. What if dark matter can interact with SM matter via "portals"

Dark photon portal

- Dark photon can kinetically mix with the SM photon
- Extend the SM by a new 'dark' gauge group U(1)':

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \epsilon e A'_{\mu} J^{\mu}_{EM}$$

 $m_{A'}$: dark photon mass ϵ : kinetic-mixing parameter

$$[\mathsf{DM}]_{\mathsf{A'}} \overset{\epsilon}{\underset{\mathsf{A}}{\otimes}} \mathsf{SM}$$

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

Upgraded LHCb detector

- Very good trigger
- Good momentum and mass resolution
- Excellent vertex location resolution

Dark photon search

Dark photon search

• Search driven by A' lifetime: $\tau_{A'} \propto (\epsilon^2 m_{A'})^{-1}$ Displaced decay search: $\epsilon^2 \in [10^{-10}, 10^{-6}]$ Prompt decay search: $\epsilon^2 \in [10^{-7}, 10^{-4}]$

Where to search: Charm decays D^{*0} , D_s^{*+}

- Abundant charm production
- The displaced D decay vertex helps with the trigger
- Focus on very low mass regions
- Signal decays: $D^* \rightarrow D A' (\rightarrow e^+e^-)$

• Search window:
$$m_{A'} \in [2m_e, \Delta m_D], \Delta m_D = 142 \text{ MeV}$$

- Irreducible Background: $D^{*0} \rightarrow D^0 e^+ e^-$
- Production rate: ~5 kHz
- Expected BR:

$$\frac{\Gamma(D^{*0} \to D^{0} \mathbf{A}')}{\Gamma(D^{*0} \to D^{0} \gamma)} = \epsilon^{2} \left(1 - \frac{m_{A'}^{2}}{\Delta m_{D}^{2}}\right)^{3/2}$$

Dark photon search

Why this measurenment is difficult:

- Given the nature of the decay:
 - Electrons emitting bremsstrahlung radiation.
 - Super-**soft** (low momentum) electrons
 - Soft electrons kicked out by the magnet.
 - Most decay chanels use **long** tracks (p > 1.5 GeV).

How can we reconstruct low momentum tracks?

- □ Including **upstream** tracks:
 - Upstream electron identification thanks to RICH1
 - Use different combination of upstream (U) and long (L) electron tracks

New "challenges":

□ HLT2 Upstream tracking is really difficult in the trigger

HLT2 trigger lines

3 decay channels including combinations of upstream and long electron tracks: LL-UL-UU

Line	ε ₁₁ [%]	$\epsilon_{ m ul}$ [%]	ϵ_{uu} [%]
$D^{*0} \rightarrow D^0 (\rightarrow K\pi)$ ee	6.5	9.3	16.3
$D^{*0} \rightarrow D^0 (\rightarrow K \pi \pi \pi)$ ee	-	-	-
$D_s^{*+} \rightarrow D_s^+ (\rightarrow KK\pi)$ ee	-	-	-

- **9** HLT2 trigger lines.
- Upstream reconstruction efficiency was improved in collaboration with experts [!2589]:
 - 5x more efficiency when including upstream tracks
- □ Very low-momentum electrons are reconstructed
- Currently working in the upstream tracking reconstruction optimization.

SMAR HEP Upstream tracking optimization

- There is a relevant efficiency drop at low momentum (<1.2 GeV)</p>
- Current implementation focusses on high momentum tracks.
- □ What needs to be tested:
- Does the track model upstream algorithm (<u>PrVeloUT</u>) need to be (re)parametrized for low momentum tracks?
- Where low momentum candidates are lost, e.g. whether we find correct track candidates during clustering of the hits but loose them somewhere afterwards

HLT2 lines optimization

- □ The HLT2 line optimization implies a **trade-off** between efficiency and rate.
- □ The lines are at the border of output rate tolerance O(100 Hz) where only triggered tracks and related primary vertices candidates are written to disk
- □ How can it be optimized without the rate exploding?
- □ Idea:
 - In line with the SMARTHEP network: is it possible to implement a real time MVA classifier at the trigger level similar to other <u>MVA lines</u>?

Methodology:

Untight trigger cuts

Train a BDT-based classifier with triggered events:

- O(1000) signal events
- O(1000) background events

Load the trained classifier in the trigger line

Optimize rates and efficiencies

SMARHER HEP HLT2 lines optimization

Triggered and loose selected data

	-			
BDT-based classifier			Rate [Hz]	Efficiency gain $\epsilon_{MVA}^{untight}/\epsilon_{triager}^{current}$
r = 0.1		LL	97	~ 4
nax_depth = 10		UL	105	~ 3
bj. function= logistic		UU	102	~ 2
Metric= AUC				_

Good classification accucary and efficiency improvement at the same trigger rate. □ Main target is to have an optimized real time classifier for dark photon selection in the trigger.

□ In the end, we will look for a dark photon peak in the dielectron mass spectra.

$$m(e_1e_2)\approx \sqrt{2E_1E_2(1-\cos\theta_{12})}\approx \theta_{12}\sqrt{2p_1p_2}$$

- How much sensitivity will be the detector for this signature?
- □ The mass constrain in D^{*0} and D^{0} improve the mass resolution
- Multiple scattering dominates the resolution.
- > Angular resolution worsens the resolution at low m(ee).
- The mass resolution is almost the same in the three electron categories.

REAL-TIME ANALYSIS FOR SCIENCE AND INDUSTRY

Next steps

- □ Perform Run 2 and early Run 3 analysis
- □ End HLT2 lines optimization and MVA implementation before next data taking campaign
- □ Test if performance gains with low-p electrons can help in other analysis:
 - Flavour Tagging
 - LFV, e.g. in $\tau \to \mu \gamma$, using $\gamma \to e^+ e^-$
- □ Start the secondments:
 - 3 months at Verizon Connect
 - 6 months at Milano Bicocca

	$\begin{array}{c} \textbf{Efficiency} \\ \epsilon_{trigger}^{current} \end{array}$
LL	~ 4
UL	~ 3.7
UU	~ 3.8

Summary

□ Upstream tracking optimization showed a **5x improvement** in the trigger efficiency.

- □ At least another **x2 improvement** implementing a MVA classifier.
- □ Mass resolution of order of O(10%) for LL-UL-UU categories.
- Excited and optimistic to see the performance in the upcoming 2024 run!

THANKS

