

SMARTHEP Annual Meeting

University of Lund, 27/11/2023 - 01/12/2023

ESR8 Micol Olocco, Prof. Johannes Albrecht

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, called H2020-MSCA-ITN-2020, under Grant Agreement n. 966086

Introduction

technische universität dortmund

Who: Micol Olocco (ESR8), Prof. Johannes Albrecht

Where: TU Dortmund (Germany) - CERN

What: Real Time Analysis for global event triggering in LHCb

Particle Physics

"Sudy of the (anti-)deuteron production in pp collisions at 5 TeV" with ALICE (CERN)

Anomaly Detection

Anomaly Detection in large-radius jets,

Natural Laguage Processing

"Natural Language Processing techniques for error message analysis in WLCG data transfer" with Operational Intelligence

Consulting

Data Analyst in Accenture

Calories

5,042 Cal

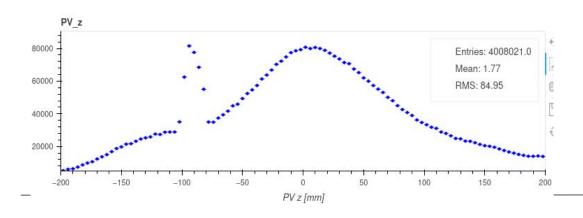
Avg Speed

29.9 km/h

Outreach

- Volunteer at the inaguration of the CERN Science Gateaway
- Planning talk in High School in Italy about High Energy Physics (and/or ML)
- Training for becoming an LHCb underground guide

Trainings & Talks


- Data Manager shifts
- Trigger expert shift
- Presentation at the 106th LHCb week
- **LHCb starterkit**, 28/11/2022 02/12/2022, CERN
- 3rd Terascale school of Machine Learning
- DPG SMuk 2023 (Dresden)
- SMARTHEP school on Hadron Collider and Machine Leraning

Trigger commissioning

- Was trigger expert (online 24h/24h, 7d/7d) for the High-Level Trigger for a week
- Very exciting, great opportunity for seeing our detector at work and all the team work behind
- If you love problem solving, it's for you!

"The problem is that there are always problems"

cit. Trigger Software Mainter

Project

Real Time Analysis for global event triggering in LHCb

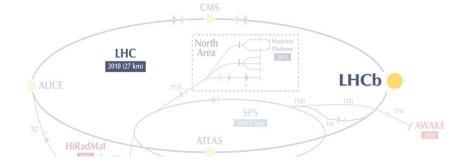
Particle Physics and Machine

Learning → Flavour Tagging

in Run 3 at LHCb

Trigger \rightarrow Automation of the

trigger sequence production

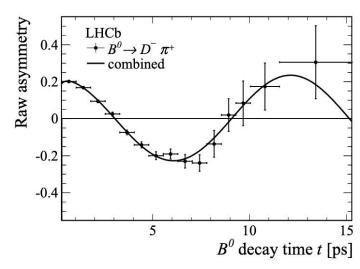

Flavour Tagging in Run 3 at LHCb

The LHCb experiment

A large physics program (not limited to!) *b* physics

Neutral B mesons

- Interesting systems because they allow to measure:
 - \circ the frequency of the neutral B oscillation (mixing) Δm_d , Δm_s
 - signals of CP (charge-parity) violation
- Both phenomena are predicted by the Standard Model:
 - → measuring these quantities means testing the Standard Model.



B mixing

Due to flavour-changing currents in the weak interaction, a B^0 can oscillate in an B^0 and viceversa)

The oscillation frequency of the meson can be determined using the time deper B^0 nt mixing asymmetry:

 $\mathcal{A}_{ ext{mix}}^{ ext{signal}}(t) = rac{N_{ ext{unmixed}}(t) - N_{ ext{mixed}}(t)}{N_{ ext{unmixed}}(t) + N_{ ext{mixed}}(t)} = \cos(\Delta m_d t)$ $N(B^0 o ext{final state})$ $N(B^0 o ext{final state})$

Fig: Raw mixing asymmetry A_{mix} (black points) for B0 \rightarrow D- π + [CERN-PH-EP-2012-315]

B mixing

In order to tag a B^0 or B_s^0 candidate as mixed or unmixed, it is necessary to determine its flavor in both states:

- initial state: production time
- final state: decay time

If $B(flavour)_{final} \neq B(flavour)_{initial} \rightarrow there was an oscillation!$

How do we access the flavour at the decay time?

How do we access the flavour at the decay time?

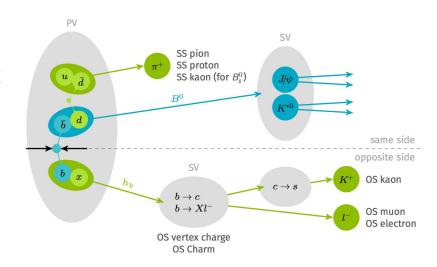
Through the decay products!

ex.
$$B_s^0 \rightarrow D_s^- \pi^+$$

How do we access the flavour at the production time?

How do we access the flavour at the production time?

Flavour Tagging Algorithms!



Flavour Tagging

Flavour Tagging algorithms access the B meson flavour at production time by exploiting the **correlation between the B flavour and the charge of the tagging particle.**

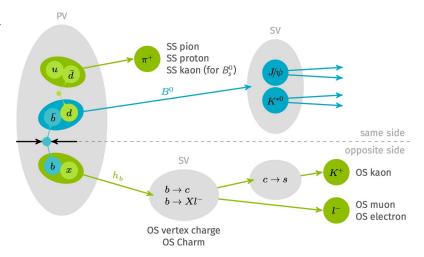
According to the particle used as tagging particles, two tagger categories:

- Same-Side
- Opposite-Side

Flavour Tagging

Flavour Tagging algorithms access the B meson flavour at production time by exploiting the **correlation between the B flavour and the charge of the tagging particle.**

If Q_{tag} is the charge of the tagging particle and d is the tagging decision:


• SS taggers: $d = Q_{tag}$

• OS taggers: $d = (-1) \times Q_{tag}$

The convention is that:

•
$$d=+1
ightarrow ar{b}$$

•
$$d = -1 \rightarrow b$$

Flavour Tagging: where is Machine Learning?

If Q_{tag} is the charge of the tagging particle:

- SS taggers: $d = Q_{tag}$
- OS taggers: $d = (-1) \times Q_{tag}$

Theory is simple, practice is not!

In practice, a particle can be misidentified, associated to the wrong decay etc. \rightarrow together with the tagging decision it's necessary to estimate a **mistag rate** (the probability of a wrong tagging decision).


Classifier trained on
$$\begin{cases} & \text{label } 0 \to \text{wrong tagging decision} \\ & \text{label } 1 \to \text{correct tagging decision} \end{cases}$$

The probability of getting label 0 can then be interpreted as the mistag!

Flavour tagging: my tasks

- Train and calibrate the taggers on simulated data with 2023 data-taking conditions \rightarrow provide an early measurement of the $B_d^0 \overline{B}_d^0$ oscillation frequency (Δm_d) with 2023 data
- Train and calibrate the taggers for 2024 data-taking and port them in the LHCb software

In collaboration with the Universität Heidelberg

Work in progress! Small sample, just for testing purpose. OSKaon trained on Bu2JspiK+

Automation of the TCK production

The trigger configuration key (TCK)

- The TCK is an unique identifier for a certain trigger configuration (ex. 0x10000001)
- The TCK is persisted as a tag in a git repository and contains information about a certain trigger configuration (such as the trigger sequence, the software version being used)
- A new TCK must be created everytime a change is integrated in the online LHCb software (ex. a prescaled line)

```
TCK: 0x10000001
workflow: "new"
parameters:
    application: "Hlt1"
    type: "hlt1_pp_default"
    label: "Prescaled lines"
    stack: "RTA/2023.08.04"
    settings: "hlt1_pp_forward_then_matching_no_ut_no_gec"
```

The trigger configuration key (TCK)

- The processes we want to automate are:
 - checks on: correct stack, interested application, type and settings
 - TCK publication on GitLab

TCK: 0x10000001
workflow: "new"
parameters:
 application: "Hlt1"
 type: "hlt1_pp_default"
 label: "Prescaled lines"
 stack: "RTA/2023.08.04"
 settings: "hlt1_pp_forward_then_

- Currently manually done by the HLT piquet:
 - prone to error (especially when the commissioning needs to be fast)
 - requiring unnecessary time (when there already are many things to do)
- Our task (with **PhD Luke Grazette**):

Develop a CI test running those checks

Final comments...

- Intense year ahead (challenging measure with 2023 data, a lot to do with the taggers) but hopefully with interesting results for the collaboration!
- I'm very curious about the differences in performances I'll see on 2023 simulation VS 2024 simulation VS 2023 data.
- Thanks to the two projects I'm working on, **I'm learning a lot**, both on software and particle physics sides (never done flavour physics before!)

Me crushing my head on B mixing papers... a spectrum of emotions

$\omega \, = \, rac{N_{ m wrong}}{N_{ m right} \, + \, N_{ m wrong}}$

B mixing

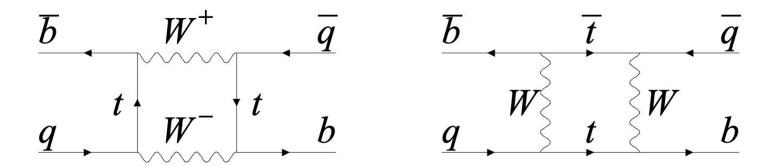


Figure 74.1: Dominant box diagrams for the $B_q^0 \to \overline{B_q}^0$ transitions (q = d or s). Similar diagrams exist where one or both t quarks are replaced with c or u quarks.