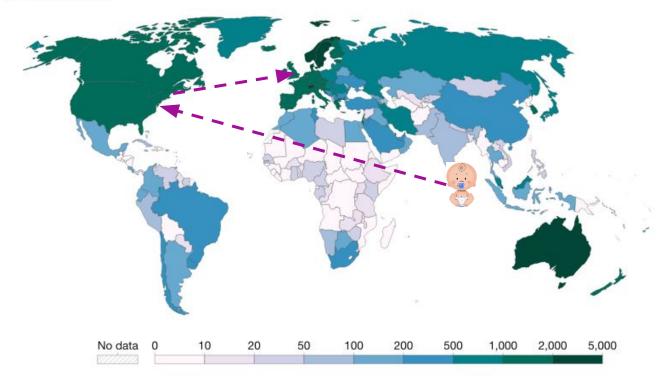


ESR12: Accelerated Anomaly Detection

Pratik Jawahar

Supervisors: Caterina Doglioni, Jiri Masik, Alex Oh, Maurizio Pierini

MANCHESTER 1824 The University of Manchester


About me:

- BS: Mechanical Engineering (2019)
- MS: Robotics Engineering (2022)
- PhD: Robo.. *sike* Particle Physics
- Experience:
 - Summer student (CERN, 2018)
 - Control algorithms for GEM detectors (CMS)
 - Technical student (CERN, 2021), DIANA
 HEP Fellowship (2020)
 - ML based anomaly detection for new physics searches
- Website: https://www.pratikjawahar.com/

Annual articles published in scientific and technical journals per million people, 2018

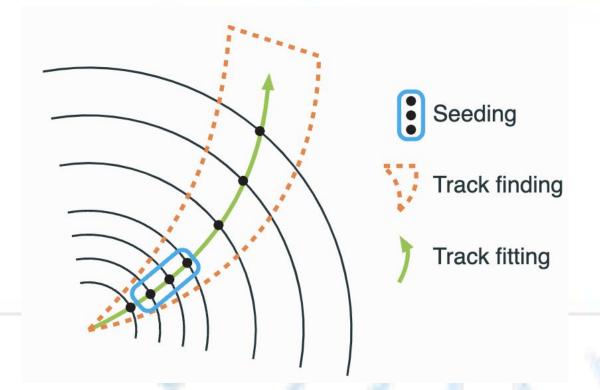
Includes physics, biology, chemistry, mathematics, clinical medicine, biomedical research, engineering and technology, and earth and space sciences.

Data source: World Bank (2022); United Nations (2022)Note: Articles are counted by the country of the author's institution.

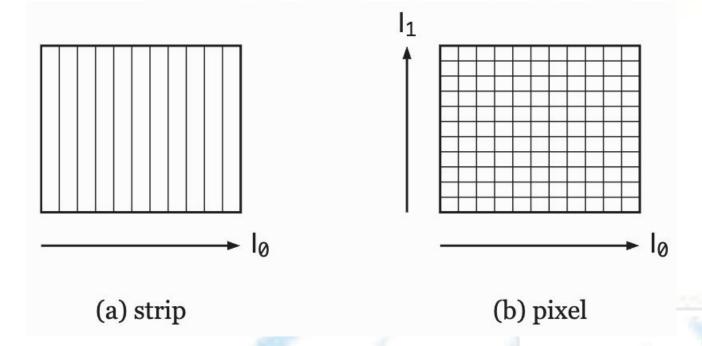
OurWorldInData.org/research-and-development | CC BY

Overview:

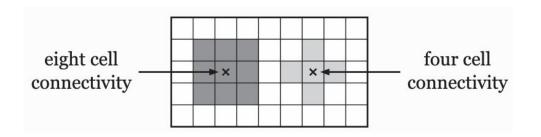
- Qualification TrAcKS
 - Heterogeneous computing solution for faster track reconstruction at the HL-LHC in ATLAS
- Data Compression with ML: Baler
- Misc Activities

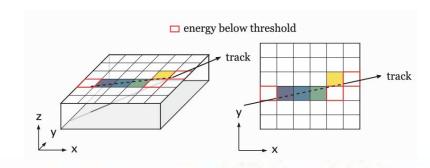


 Reconstruct trajectories of charged particles as they pass through different layers of the detector, subject to a magnetic field

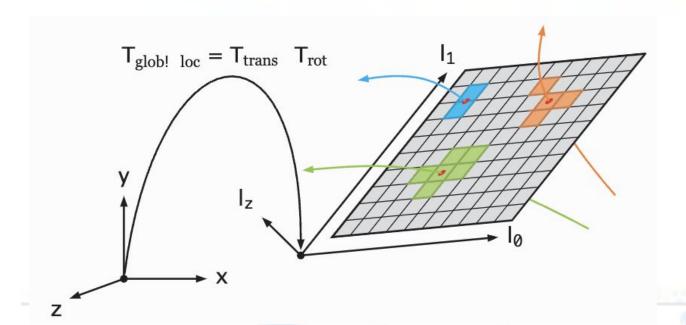


- Step 1: Detect a charged particle when it passes through a layer
 - Ionization in semiconductors

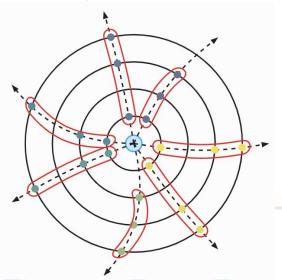




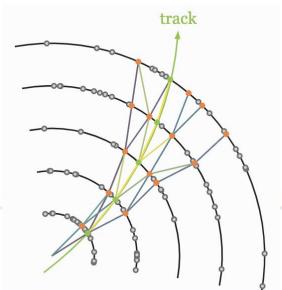
- Step 2: Clusterization
 - Depends on how you treat readout, detector design etc.
 - Connected Components Algo (CCA) iterated on edges



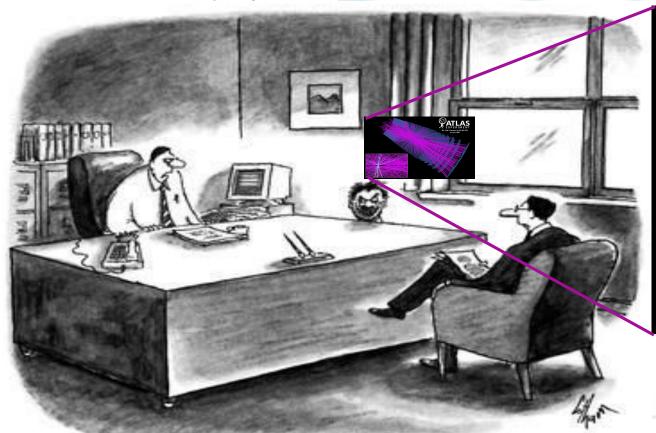
- Step 3: Spacepoint Formation
 - Move from local sub-detector frame to global detector frame

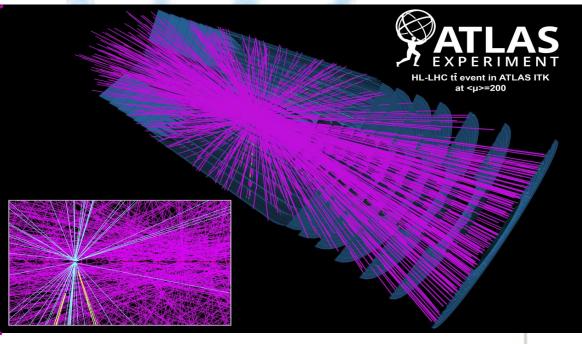


- Step 4: Seeding
 - Find triplets of spacepoints that could potentially belong to the same track
 - Conformal maps => Hough Transform



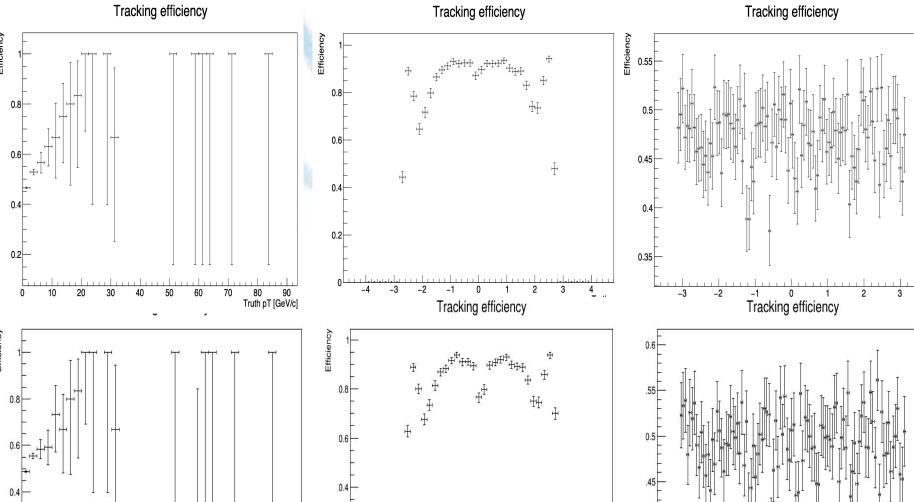
- Step 5: Track finding and fitting
 - Start from a seed
 - Kalman formalism (eg. Combinatorial KF) => Smoothing (eg. global χ^2 fit, or walk back with Kalman fit) => Ambiguity resolution

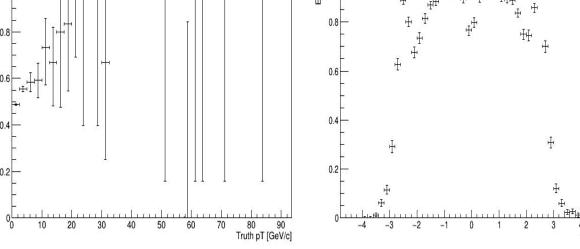



"As soon as one problem is solved, another rears its ugly head."

"As soon as one problem is solved, another rears its ugly head."

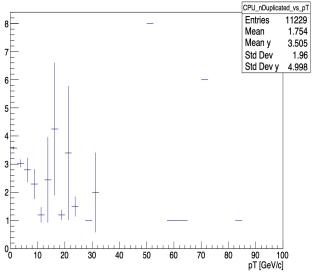
But sequential algo like CKF do much better on CPUs than GPUs!

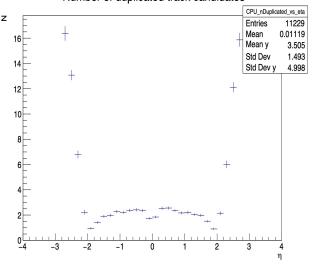

- Heterogeneous Track Reconstruction:
 - Step 1: Profiling CPU and GPU code to identify speed-up in inference time
 - Ideally without drop in tracking efficiency
 - Step 2: Identify bottlenecks
 - Points where one architecture outperforms the other
 - Step 3: Calculate data-transfer latencies at bottlenecks
 - Data transfer latencies between host (CPU) and device (GPU) eat up speed-up



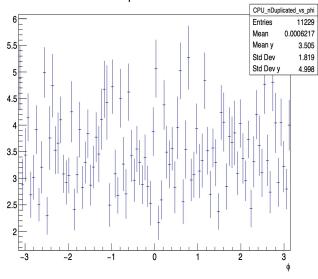
CPU

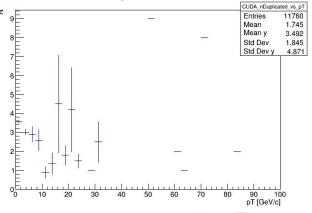
CUDA

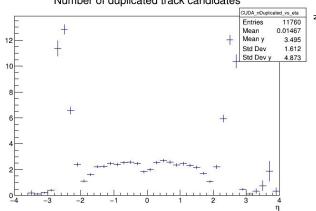


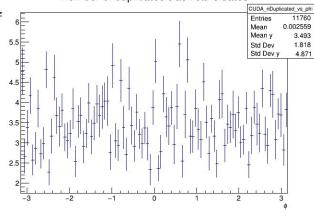

CPU

CUDA


Number of duplicated track candidates


Number of duplicated track candidates


Number of duplicated track candidates


Number of duplicated track candidates

Number of duplicated track candidates

Number of duplicated track candidates

CUDA Profiling

D2H Calculations - CPU vs D2H CPU

D2H Calculations - CPU vs CUDA

```
Running seeding algo with CUDA spacepoints moved to host
Number of D2H seeds: 28346 (host), 28346 (device)

Matching rate(s):

- 88.6898% at 0.01% uncertainty

- 98.9275% at 0.1% uncertainty

- 99.2592% at 1% uncertainty

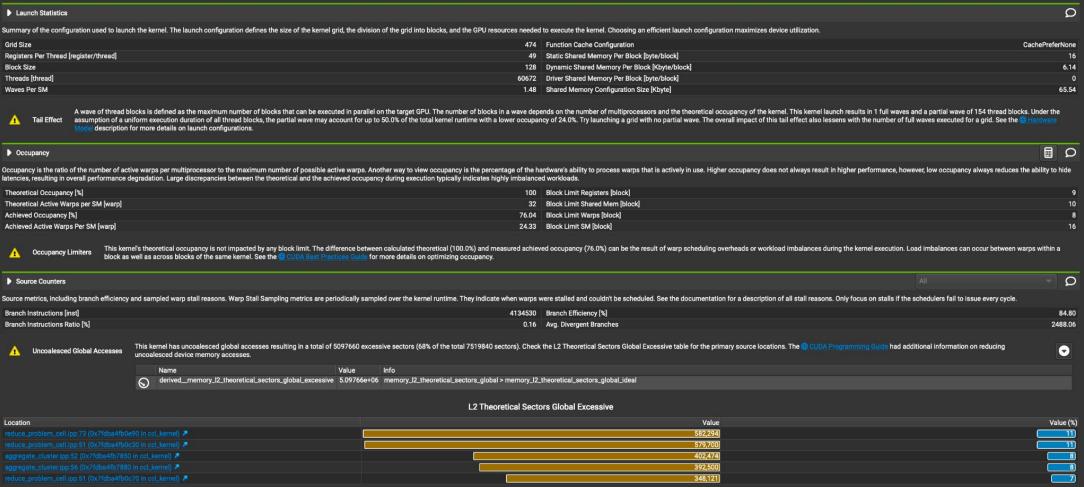
- 99.2839% at 5% uncertainty
```

Running track param est with CUDA spacepoints and CUDA seeds moved to host Number of D2H track parameters: 28346 (host), 28346 (device)

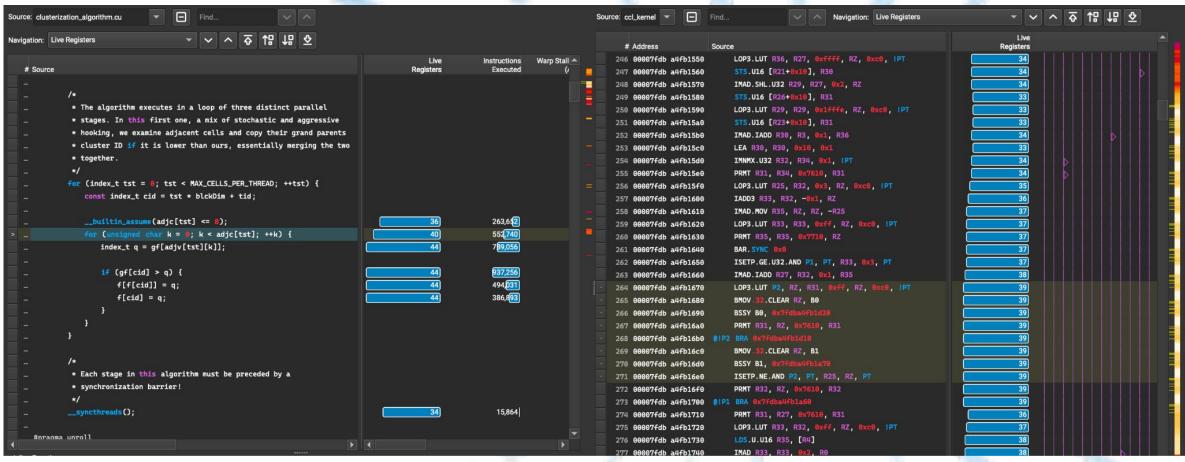
Matching rate(s):

- 99.2944% at 0.01% uncertainty
- 99.7989% at 0.1% uncertainty
- 99.8024% at 1% uncertainty
- 99.8024% at 5% uncertainty

```
Number of seeds: 28346 (host), 28346 (device)
Matching rate(s):
- 87.6208% at 0.01% uncertainty
- 98.797% at 0.1% uncertainty
- 99.2345% at 1% uncertainty
- 99.2733% at 5% uncertainty
Number of track parameters: 28346 (host), 28346 (device)
Matching rate(s):
- 98.7617% at 0.01% uncertainty
- 99.7989% at 0.1% uncertainty
- 99.8024% at 1% uncertainty
- 99.8024% at 5% uncertainty
```



Data File		No. of Events
_	tml_detector/trackml- detector	1

ID -	Issues Detected	Function Name	Demangled Name	Process	Device Narr Grid Size		Block Size		Cycles [cycle]		Duration [msecond]	Compute T	hroughp Memory Throughput	[%] #	# Registers [register/thread]	
)	20 ccl_kernel	tracco::cuda::kernels::ccl_kernel(v	[1138765] tracc	Tesla T4	474, 1	, 1	128, 1,	1	472435		0.81	43.75	43.72		49
		14 form_spacepoints	traccc::cuda::kernels::form_space	[1138765] tracc	Tesla T4	137, 1	, 1	1024, 1,	1	95281		0.16	5.95	36.43		36
	2	11 count_grid_capacities	traccc::cuda::kernels::count_grid	[1138765] tracc	Tesla T4	545, 1	, 1	256, 1,	1	18692		0.04	22.31	50.49		20
	3	14 populate_grid	traccc::cuda::kernels::populate_gri	[1138765] tracc	Tesla T4	545 , 1	, 1	256, 1,	1	35039		0.06	11.99	54.14		22
	1	15 fill_prefix_sum	traccc::cuda::kernels::fill_prefix_su	[1138765] tracc	Tesla T4	18, 1	, 1	32, 1,	1	23989		0.04	7.45	26.34		28
	i i	10 count_doublets	traccc::cuda::kernels::count_doubl	[1138765] tracc	Tesla T4	1131, 1	, 1	64, 1,	. 1	848561		1.45	71.08	16.92		42
	5	13 find_doublets	traccc::cuda::kernels::find_doublet	[1138765] tracc	Tesla T4	479 , 1	, 1	64, 1,	1	1211907		2.07	33.78	35.93		38
	,	9 count_triplets	traccc::cuda::kernels::count_triplet	[1138765] tracc	Tesla T4 2	24496 , 1	, 1	64, 1,	1	1957486		3.33	68.04	23.78		45
	1	15 reduce_triplet_counts	traccc::cuda::kernels::reduce_tripl	[1138765] tracc	Tesla T4	479, 1	, 1	64, 1,	1	19298		0.03	2.52	11.65		16
		15 find_triplets	traccc::cuda::kernels::find_triplets([1138765] tracc	Tesla T4	720, 1	, 1	64, 1,	1	294522		0.51	29.96	27.57		45
1)	18 update_triplet_weights	traccc::cuda::kernels::update_tripl	[1138765] tracc	Tesla T4	930, 1	, 1	64, 1,	1	18140		0.04	13.81	48.89		23
1		19 select_seeds	traccc::cuda::kernels::select_seed	[1138765] tracc	Tesla T4	479 , 1	. 1	64, 1,	1	102384		0.18	26.16	26.16		39
1:	2	14 estimate_track_params	traccc::cuda::kernels::estimate_tra	[1138765] tracc	Tesla T4	443, 1	, 1	64, 1,	1	78502		0.14	5.62	44.97		52



Data File		No. of Events
tml_full/ttbar_	tml_detector/trackml-	
mu300	detector	1

CDII

New Version - with FastSV

CDII

CPU			GPU		
	Parent process	Duration [mu-sec]		Parent process	Duration [mu-sec]
	Container Instantiation	8		Container Instantiation	6
	File reading	1,720,207		File reading	NA
	Clusterization	40,197		Clusterization	NA
	Spacepoint Formation	6,078		Spacepoint Formation	NA
	Clusterization + Spacepoints	46,275		Clusterization + Spacepoints	40,197
	Seeding	1,075,583		Seeding	80,072
	Track param est	27,909		Track param est	2,651

Old Version

CPU		4.75	GPU			
	Parent process	Duration [mu-sec]		Parent process	1	ration u-sec]
	Container Instantiation	8		Container Instantiation		6
	File reading	1,288,893		File reading	ΝA	4
	Clusterization	36,070		Clusterization	NA	4
	Spacepoint Formation	3,131		Spacepoint Formation	ΝÆ	4
	Clusterization + Spacepoints	39,201		Clusterization + Spacepoints		2,433
	Seeding	792,729		Seeding		11,686
	Track param est	9,316		Track param est		411

Old Version

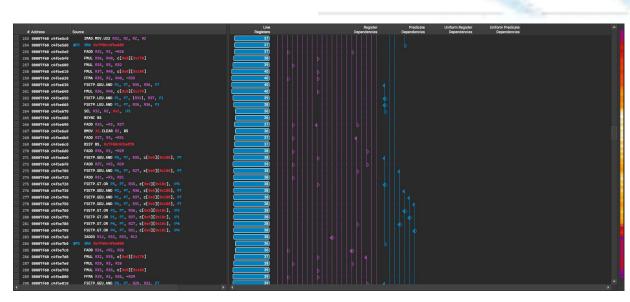
- Seeding Synchronous kernel launches
 - fill prefix sum used for synchroniszation

ID	ssues Detected		Function Name	Demangled Name
	0	2	find_clusters	traccc::cuda::kernels::find
	1	2	fill_prefix_sum	traccc::cuda::kernels::fill_p
	2	2	count_cluster_c	traccc::cuda::kernels::coun
	3	2	connect_compo	traccc::cuda::kernels::conn
	4	3	create_measure	traccc::cuda::kernels::creat
	5	2	fill_prefix_sum	traccc::cuda::kernels::fill_p
	6	2	form_spacepoints	traccc::cuda::kernels::form
	7	2	fill_prefix_sum	traccc::cuda::kernels::fill_p
	8	2	count_grid_capa	traccc::cuda::kernels::coun
	9	2	populate_grid	traccc::cuda::kernels::popu
1	0	3	fill_prefix_sum	traccc::cuda::kernels::fill_p
1	1	2	count_doublets	traccc::cuda::kernels::coun
1	2	3	fill_prefix_sum	traccc::cuda::kernels::fill_p
1	3	2	find_doublets	traccc::cuda::kernels::find
1	4	3	fill_prefix_sum	traccc::cuda::kernels::fill_p
1	5	2	count_triplets	traccc::cuda::kernels::coun
1	6	3	fill_prefix_sum	traccc::cuda::kernels::fill_p
1	7	3	find_triplets	traccc::cuda::kernels::find
1	8	3	fill_prefix_sum	traccc::cuda::kernels::fill_p
1	9	3	update_triplet_w	traccc::cuda::kernels::upda
2	0	2	select_seeds	traccc::cuda::kernels::sele
2	1	2	estimate_track	traccc::cuda::kernels::esti

New Version - with FastSV

- Seeding Asynchronous kernel launches
 - Increases paralellization

ID 🍝	Issues Detected	Function Name	Demangled Name
0	3	ccl_kernel	traccc::cuda::kernels::ccl_kernel(v
1	3	form_spacepoints	traccc::cuda::kernels::form_space
2	2	count_grid_capacities	traccc::cuda::kernels::count_grid
3	2	populate_grid	traccc::cuda::kernels::populate_gri
4	3	fill_prefix_sum	traccc::cuda::kernels::fill_prefix_su
5	2	count_doublets	traccc::cuda::kernels::count_doubl
6	2	find_doublets	traccc::cuda::kernels::find_doublet
7	2	count_triplets	traccc::cuda::kernels::count_triplet
8	2	reduce_triplet_counts	traccc::cuda::kernels::reduce_tripl
9	3	find_triplets	traccc::cuda::kernels::find_triplets(
10	3	update_triplet_weights	traccc::cuda::kernels::update_tripl
11	3	select_seeds	traccc::cuda::kernels::select_seed
12	2	estimate_track_params	traccc::cuda::kernels::estimate_tra

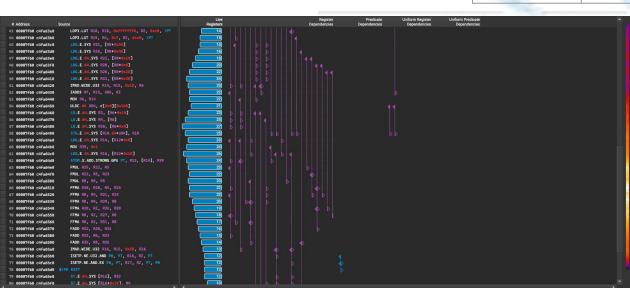


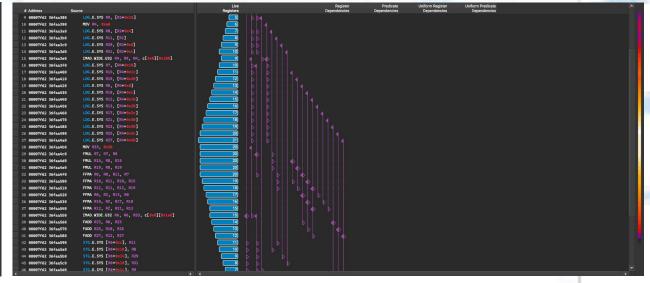
SMANHER CUDA Profiling- NEW

Old Version count_doublets()

Data File	Detector Geometry	No. of Events
tml_full/ttbar_ mu300	tml_detector/trackml-detector	1

New Version - with FastSV count_doublets()

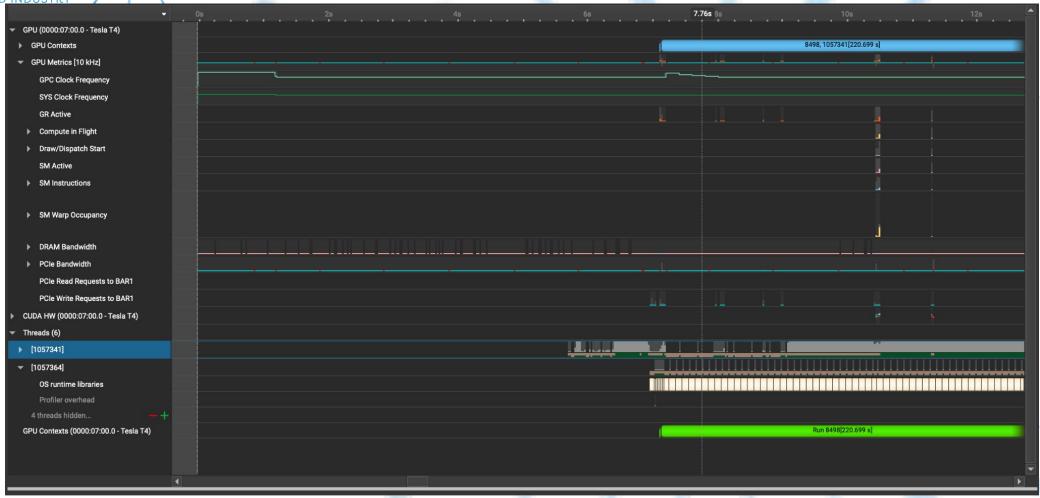




Old Version

Data File		No. of Events
_	tml_detector/trackml- detector	1

New Version - with FastSV



CUDA Profiling - NSight Systems

CUDA Profiling

- POC feasibility example:
 - Clusterization, Spacepoint formation, Seeding are significantly faster on GPU
 - Considering Host-Device and Device-Host wall-time overheads,
 - there is still a speedup of ~O(800 msec)
- *Note* This is only an example for one event

Data File	Detector Geometry	No. of Events
tml_full/ttbar_	tml_detector/trackml-	
mu300	detector	1

СРИ			GPU		
	Parent process	Duration [mu-sec]		Parent process	Duration [mu-sec]
	Container Instantiation	15		Container Instantiation	5
	File reading	1,341,172		File reading	NA
	Clusterization	36,070		Clusterization	NA
	Spacepoint Formation	3,131		Spacepoint Formation	NA
	Clusterization + Spacepoints	39,201		Clusterization + Spacepoints	2,433
	Seeding	814,789		Seeding	11,686
	Track param est	9,316		Track param est	411

- POC feasibility example:
 - Clusterization, Spacepoint formation, Seeding are significantly faster on GPU
 - Considering Host-Device and Device-Host wall-time overheads,
 - there is still a speedup of ~O(800 msec)
- If CKF on GPU is considerably slower, it may still be feasible to run the first part of the chain on Device and move data to Host for CKF
 - Potential solution for net speedup in the tracking chain
- *Note* This is only an example for one event

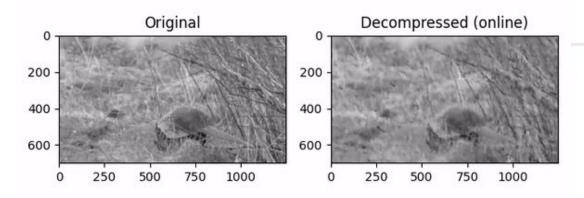
Data File	Detector Geometry	No. of Events
tml_full/ttbar_	tml_detector/trackml-	
mu300	detector	1

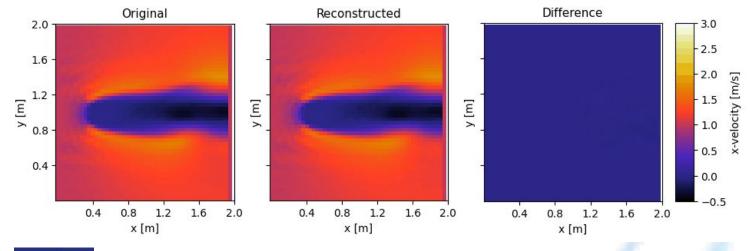
CPU Parent process		GPU	Parent process	Duration [mu-sec]
	Duration [mu-sec]			
Host to Device [Cells]	3035		Device to Host [Cells]	NA
Host to Device [Spacepoints]	2,703		Device to Host [Spacepoints]	1087
Host to Device [Seeds]	781		Device to Host [Seeds]	349
Host to Device [Track params]	1,655		Device to Host [Track params]	1,161

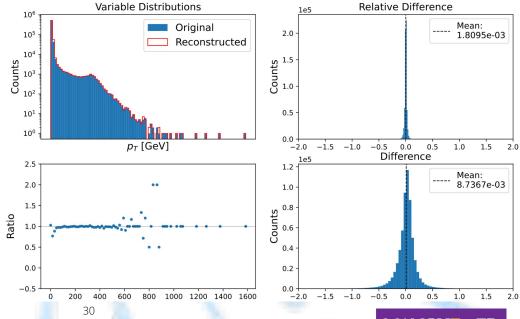
Next Steps

- Extend studies to larger number of events with more realistic data (eg. mu=60, 140, 200 etc)
- Use seeds generated by traccc in ACTS CKF function to understand Device-Host costs
- Repeat overhead studies wrt other parameters such as Memory, GPU Occupancy etc.

Data File	Detector Geometry	No. of Events
tml_full/ttbar_	tml_detector/trackml-	7
mu300	detector	1


СРU		GPU		
Parent process	Duration [mu-sec]		Parent process	Duration [mu-sec]
Host to Device [Cells]	3035		Device to Host [Cells]	NA
Host to Device [Spacepoints]	2,703		Device to Host [Spacepoints]	1087
Host to Device [Seeds]	781		Device to Host [Seeds]	349
Host to Device [Track params]	1,655		Device to Host [Track params]	1,161


Baler: ML based Data Compression



Paper: https://arxiv.org/abs/2305.02283

Code: https://github.com/baler-collaboration/baler

MANCHESTER 1824 The University of Manchester

Misc Activities

Workshops/Conferences:

- IOP APP&HEPP UK National Talk
- FastML Talk
- Hammers and Nails Poster

Schools:

- tCSC Split
- HASCO particle physics
- STFC UK theory summer school

Teaching/Outreach:

- Jupyter Notebooks Intro Lund
- Advanced C++ Manchester

Side Quests:

- Helped lift new wire bonder into the Lund Uni clean room
- Working on DDMTD corrections for mu-CTP trigger chip for temperature variance with Kalman Filters

Hackathons:

- DL in HEP MIT
- Baler (Lund)

Future Work

- Work on novel anomaly detection solutions?
- Contribute to the HLS4ML project?
- Analysis: Semi-visible jet signatures for dark sector searches - ML based signal-background discrimination?
- TBD!

Thank you!

Questions?

People are hungry, just putting it out there:)

Feel free to chat later as well!:)

