

Joachim C K B Hansen

ESR10: Real-time calibration of the ALICE Time Projection Chamber and ML traffic predictions

Lund University

SMARTHEP yearly meeting

Lund 2023 27th November

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

Overview

- * Past year
 - ALICE
 - Heavy ion physics
 - TPC
 - Ximantis
- ** Summary

My analysis...

Phys.Rev.Lett.116.132302

arXiv: 1205.0579 [hep-ph]

Joachim C K B Hansen

Manipulate geometry to learn more about the initial conditions

ALICE APPROVAL For Paper

Secondment CERN

- Service task
 - 3 month stay in CERN
- Calibration of TPC

Figure 2.1: Operation principles of a TPC

Motivation

Procedure

Track parametrization:

* Kalman filter fit on the TPC clusters

Figure 2.7: Geometry of a TPC sector.

Input: Initial Kalman fit: $y, z, \sin \phi, \tan \lambda, q/p_{\rm T}$ Selected TPC clusters (3) Z-shift

Results

- * We have had issues with compatibility between online / offline reconstruction
- Initially issues catching the correlation between the track parameters

Ximantis

* Collaborating with:

- Alexandros Sopasakis
- Donglin Liu

Computer Vision

Input data

Fig. 1. A section of the Goteborg traffic network with multiple cameras indicated along each road each collecting images every minute. Data provided by the Swedish traffic authoridy: Trafikverket.

terest.

* The input data of our Network * Will be done for every camera available

Sopasakis, A. (2019)

Previous work

- Traffic forecasting using different approaches...
- * Works well, **but** can be improved

Graph Neural Network (GNN)

- Real world data does not (always) live on a grid
- * G = (V, E)
 - V: Set of Vertices (or nodes)
 - *E*: Set of Edges (links)
 - Directional (non-directional)

Examples

0:10 C:13

source

Graphs in Traffic

- Roads and intersections provides a "graph" structure itself
 - In our case
 - Camera + GPS
 - Caltrans Performance Measurement System
 - PeMSD8 (San Bernardino) Highway data

source

source

Adjacency Matrix

Our work so far

Training state-of-the-art models Model: e.g. ASTGCN Atter Data: PEMS

We	have

Table 1		
Model	MAE	MAPE
GWNE	15.9980	0.1043
H_GCN_wh	17.6598	0.1151
ASTGCN_Recent	19.3278	0.1270
GRCN	20.4614	0.1338

Joachim C K B Hansen

Attention Based Spatial-Temporal

e reproduced SOTA

https://doi.org/10.1609/aaai.v33i01.3301922

Next steps

- Adapt to Göteborg in the current workflow
 - Expand our architecture
 - We have GPS coordinates of cameras
 - We have a traffic "flow" measurable

Physics Analysis TPC calibration

* Ximantis

