

Jet calibration with data-based ML training and identifying anomalies for applications in HEP and Finance

SMARTHEP Annual Meeting

27th of November 2023 Laura Boggia

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

About Me…

- Swiss & Italian
- Grew up in Switzerland
- 2017-2020: BSc in Physics at EPFL
- 2020-2022: MSc in Physics at ETH
	- Focus on Theoretical Physics, e.g. QFT and GR
	- Thesis on Quantum ML for HEP with IBM Research Zurich
- 2022-Present: PhD with IBM Research & LPNHE at Sorbonne Université
	- Supervised by Bogdan Malaescu (LPNHE) & Shubham Gupta (IBM)
	- Also working with Anja Butter (LPNHE), Pierre Feillet (IBM) and other members of the ATLAS collaboration

Various Activities during PhD

- Workshops
	- Sep 2023: 'ATLAS Hadronic Calibration Workshop'
	- Oct 2023: 'Journées de Rencontre des Jeunes Chercheurs'
	- Jan 2024: 'Inter-experiment Machine Learning Workshop'
- Outreach
	- Oct 2022/2023: 'Fête de la Science'
		- 'My thesis in 5 minutes'
		- Guided tours of the lab for the public

• Training

- Nov 2022: 'ATLAS Induction Day and Software Tutorial'
- Dec 2022: 'MOOC on Scientific Integrity'
- Jun 2023: 'Elements of Statistics'
- Aug 2023: 'HEP C++ Essentials Course'
- and SMARTHEP schools...

Simultaneous jet calibration with ML including in situ JER measurement

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

Jets Physics

- Jets represent the spray of particles produced by the hadronization of a quark or gluon Hard scatter Showering Hadronization Hadronization Hadronization Hadronization Hadronization Hadronization Hadrons Tracks Calorimeters Calorimeters Calorimeters Calorimeters Calorimeters Calorimeters Calorimeters Calorimet pr_{oton}
- Characterised by 4-vector: (\vec{p}, E)
- Exact definition depends on jet algorithm (often anti-kT algorithm*¹*)
- Calibration is essential because energy deposits differ depending on particle

proton $\bar{\bar{q}}$ \overline{q} # $\frac{1}{\sqrt[3]{2}}$

Jet: collimated spray of

Jets Physics

- Jets represent the spray of particles produced by the hadronization of a quark or gluon Hard scatter Showering Hadronization Hadronization Hadronization Hadronization Hadronization Hadronization Hadrons Tracks Calorimeters Calorimeters Calorimeters Calorimeters Calorimeters Calorimeters Calorimeters Calorimet pr_{oton}
- Characterised by 4-vector: (\vec{p}, E)
- Exact definition depends on jet algorithm (often anti-kT algorithm*¹*)
- Calibration is essential because energy deposits differ depending on particle

 $\bar{\bar{q}}$ \overline{q} ನಾಯ್ **Regge**

proton

Jet: collimated spray of

- On-going studies to replace current multi-step calibration model*¹*
	- Current research: try to merge Absolute MC-based Ca Sequential Calibration (GSC) for faster testing of new
- My QT: optimise jet energy resolution (JER) including information from the interdata (in addition to MC samples)

(figure from "Jet energy scale and resolution measured in proton-proton collisions at $\sqrt{s} = 13$ *TeV with the ATLAS detector"*, ATLA ¹ ("New techniques for jet calibration with the ATLAS detector", ATLA

ML Model for Jet Calibration

\sim 200 k param • Regression problem Input Constituents \bullet Output is a probability distribution: $(\mu_{p_T}, \sigma_{p_T})$ • Mean corresponds to calibration factor Deep sets¹ $X \in \mathbb{R}^M$ • Constructed using 2 NN, 1 for jet constituents, 1 for jet 4-vector Model contains permutation invariant layer (e.g. sum layer) because order of events doesn't matter **Jet** • Supervised learning problem: **Constituents** • Compare truth μ to reco level $\mu(\theta)$, $\sigma(\theta)$ (p_x, p_y, p_z, p_T) (*p* • Likelihood $\mathcal{L}(\theta) = \frac{1}{\sqrt{2\pi\sigma^2(\theta)}}$ $\exp\left(-\frac{(\mu(\theta)-\mu)^2}{2\sigma^2(\theta)}\right)$ • $\log s_G(\theta) = \min_{\theta} (-\log \mathcal{L}(\theta))$ $(80, 4)$

 $=$ min [

1

 $\mu(\theta) - \mu)^2$

 $\frac{\partial}{\partial \sigma^2(\theta)}$ + log $\sigma(\theta)$ + const.]

2

("<u>Energ</u>")

• For events with at least two hard jets, defi dijet asymmetry*¹*:

•
$$
A = \frac{p_T^{ref} - p_T^{prob}}{p_T^{avg}}
$$
, with $p_T^{avg} = \frac{p_T^{ref} + p_T^{prob}}{2}$,

where ref and probe is randomly assigned to the leading jets of every dijet event

- Momentum conservation implies $A = 0$ in ideal case (i.e. no noise, additional jets or other effect
- For experimental data, we observe distribution around 0 where the standard deviation (std) depends on reconstructed jet resolution (JER)

Minimising Jet Energy Res

- Relative JER can be estimated from σ_{A} (neg from physics effects):¹ $\frac{\sigma_{p_T}}{n}$ p_T $=\frac{\sigma_{\mathcal{A}}^{det}}{\sqrt{2}}$ $\overline{2}$ ≅ $\frac{\sigma_{\mathcal{A}}}{\sqrt{2}} \sim \sigma_{\mathcal{A}}$
	- Completely independent of true labels \rightarrow useful for
- [Update loss function:](http://arxiv.org/abs/2007.02645)

 $\left| \text{loss}(\theta) = f_1 \cdot \text{loss}_G(\theta) + f_2 \cdot \sigma_{\mathcal{A}} \right|$

where $\sigma_{\mathcal{A}(\theta)}$ is the std of $\mathcal{A}(\theta)$

- ML model simultaneously minimises the JER measured in-
- No longer fully dependent on truth level, ML mod

¹ ("Jet energy scale and resolution measured in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector", ATLA

Testing set: reco jets

Results with $f_2 = 0$

• Asymmetry factor f is fixed to 0

 $\text{loss}(\theta) = \text{loss}_G(\theta)$

- ML model doesn't improve/has little effect on JER
	- $\sigma_{\mathcal{A}}$ of reco jets (at pileup level): \sim 9.9 %
	- σ_{A} of regressed jets (i.e. after applying calibration factors predicted by ML model): ~ 10.7 %
- Can σ_A (and therefore JER) be improved by adding asymmetry term in loss function, i.e. $f \neq 0$?

Dijet asymmetry for $1000.0 \le p_{T, avg}$ < 3000.0

Challenges with $f_1 = 0$

- Trivial solution: model pushes all pT predictions towards one constant value which minimises std of asymmetry
- PROBLEM: very unphysical solution, we want the average jet pT to stay invariant Histogram of jet p_T
- \rightarrow Introduce constraints
- Possible constraints $C(\theta)$:
	- Keep batch mean invariant (predicted vs. initial pT)
	- Introduce bins in pT and keep bin mean invariant

$$
loss(\theta) \rightarrow f_1 \cdot loss_G(\theta) + f_2 \cdot \sigma_{\mathcal{A}(\theta)} + f_3 \cdot C(\theta)
$$

Results with $f_1 = 0$

- With constraints for each p_T bin, the model's predictions start to look more physical:
	- $\sigma_{\mathcal{A}}$ (and JER) decrease noticeably
	- Predicted and initial jet p_T very similar (per bin)

ATLAS Simulation Work In Progress AntiKt4EMPflowJets JETM2 JZ 10 $0.2 \le n < 0.7$ \mathbf{a} 6 Asymmetry Gaussian approx with $\mu = 0.005$ $\sigma = 0.047$

$-0.100 - 0.075 - 0.050 - 0.025$ 0.000 0.025 0.050 0.075 0.100 asymmetry

$\int \text{loss}(\theta) = \sigma_{\mathcal{A}(\theta)} + 3 \cdot C(\theta)$ | Dijet asymmetry for 1920.0 $\leq p_{T,ava} <$ 2430.0

Testing set: reco jets Dijet asymmetry for $1900.0 \le p_{T, avg} < 2400.0$

Fraud Detection with IBM Research

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

Project with IBM: Fraud Detection

- Fraud detection in financial transactions
	- High input rate: ~1.5 billion of transactions / day
	- Highly imbalanced data: anomalies are very rare but should be correctly classified
	- Essential to understand/explain decisions of model
- New kind of frauds might appear \rightarrow anomaly detection
- No data available for confidentiality reasons:
	- Develop anomaly detection methods for anomalous jet events
	- Adapt those methods to fraud detection

- Jet calibration with ML
	- Identified asymmetry as physical quantity for improving JER
	- Adjusted loss function to include information from experimental data
- Future work:
	- Developing anomaly detection method for unusual jet events
	- Applying / Transferring method to fraud detection

Thank you for your attention!

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

Backup

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

Machine Learning

Machine learnir["]
to act v

- Deep learning describes part of ML focusing on (deep) Neural Networks (NN)
- Can be used for learning more elaborate functions
- In general, learning model tries to optimise a loss function by repeatedly adjusting its own parameters
- We distinguish between supervised and unsupervised learning:
	- Supervised: we train the model by comparing the model's predictions to a known ground truth (e.g. mean-squared error)
	- Unsupervised: we don't have any ground truth to base our training on

Input

Deep Sets Model

- Model contains permutation invariant layer (e.g.
- Why do we want permutation invariance for jet p
	- Order of events doesn't matter, each collision ev
	- Can guarantee infrared and collinear (IRC) safety comparing QCD theory predictions to experiment

IRC-Safe Observable Decomposition. An IRC-safe obser *arbitrarily well as:*

$$
\mathcal{O}(\{p_1,\ldots,p_M\}) = F\left(\sum_{i=1}^M z_i \Phi(\hat{p}_i)\right)
$$

where z_i is the energy (or p_T) and \hat{p}_i the angular information

Approximate functions F , Φ with neural networks

ML Model for Jet Calibration

• Regression problem

Output is a probability distribution: $(\mu_{p_T}, \sigma_{p_T})$ Mean corresponds to calibration factor

Deep sets¹

Constructed using 2 NN, 1 for jet constituents, 1 for jet 4-vector

Model contains permutation invariant layer (e.g. sum layer) because order of events doesn't matter

Supervised learning problem:

Compare truth μ to reco level $\mu(\theta)$, $\sigma(\theta)$ Likelihood $\mathcal{L}(\theta) = \frac{1}{\sqrt{2\pi\sigma^2(\theta)}}$ $\exp\left(-\frac{(\mu(\theta)-\mu)^2}{2\sigma^2(\theta)}\right)$ $\text{loss}(\theta) = \min_{\theta} (-\log \mathcal{L}(\theta))$ $=$ min [1 2 $\mu(\theta) - \mu^2$ $\frac{\partial}{\partial \sigma^2(\theta)}$ + log $\sigma(\theta)$ + const.]

Add GSC variables

 $\frac{1 \text{ Npy}}{1 \text{ m}}$ The number of reconstructed primary vertice
Table 1: List of variables used as input to the GNNC. Variables with a $*$ correspond to GSC.

Dijet Asymmetry of JETM2 JZ (before Training)

- Truth dijet asymmetry has non-Gaussian tails
	- Use Gaussian as a first approximation
	- Can be improved by fitting convolution of exponential Gaussian function*¹*
- Goal is to minimise JER
	- Cannot get better than truth level
	- True asymmetry is limited by smearing from physics
- After training:
	- Apply predicted calibration factors to uncalibrated te samples
	- Check their p_T distribution, dijet asymmetry & estimate. JER from it
	- Call them 'regressed jets'

Input: MC Samples

- Old input samples:
	- Per event: 1-2 leading jets, no event
	- All jets are treated independently
	- Isolated jets, lots of monojet events
	- \bullet Empty entries are filled with mask v
	- Info about masking will be passed on
- Modified input samples:
	- Keep event info of 3 leading jets
	- Empty entries are filled with same n
	- Additional features: GSC variables (22 add. Variables)
- Motivation: apply dijet topology cuts on jet components to ensure good p_T balance between leading jets

Input: Selection Criteria

- Central jets (to simplify problem, will be e $|\eta| \in [0.2, 0.7]$
- Apply dijet topology cuts¹ on jet compone balance between l[eading jets](http://arxiv.org/abs/2007.02645)

 $\Delta\phi_{12} > 2.7$ rad

 p_{T_3} < max(25 GeV, 0.25 · $p_{T,av}$

- pT between 1800 and 2400 GeV because
	- Later add more JZ slices, e.g. study lower pT
- Cut outliers (i.e. badly reconstructed jets)

Input: Jet Components

- Events have been resampled to flatten distribution of $\log p_T^{avg}$ where $p_T^{avg} = (p_{T_1} + p_{T_2})/2$
	- This approach was chosen because $\log p_{T}^{a\dot v g}$ is physically significant
- PROBLEM:
	- Resampling assigns some very large weights to certain events
	- Weights differ by several orders of $10⁴$ magnitude $10³$

 $10²$

 $10^1\,$

 10^0

à **First naive implementation failed!**

First Results with $f \neq 0$

- Predicted pT much worse
- Predicted JER slightly better:
	- **IFR of jets before training:** \sim **9.9 %**
	- JER of regressed jets (i.e. after applying calibration factors predicted by ML model): \sim 10.2 %

Problem: Why do we have negative calibration factors?

0.05

asymmetry

 0.10

 0.15

0.20

 $2¹$

 $\mathbf{1}$

 $\overline{2}$

1

 -0.20 -0.15 -0.10 -0.05 0.00

What's next

- Naive approach doesn't work immediately
- It seems the two loss terms contradict/work against each other
	- Add softplus layer to restrict outputs of NN to positive values*¹*
	- Introduce penalty term that forbids unphysical solution
	- Standardise truth targets
- Use GSC variables*²* (which are known to improve JER) in addition to jet 4-vector as jet inputs

Cons

 (p_x, p_y)

More results with $f \neq 0$

- New variables added
- Softplus layer applied
- Predicted / True ratio pf pT is getting closer to 1 but JER is worse
	- JER of reco jets: \sim 9.9 %
	- JER of regressed jets (i.e. after applying calibration factors predicted by ML model): \sim 12.7 %

Dijet asymmetry for 900.0 $\leq p_T$

 < 4500.0