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About Me...

* Swiss & Italian
* Grew up in Switzerland
* 2017-2020: BSc in Physics at EPFL

* 2020-2022: MSc in Physics at ETH

® Focus on Theoretical Physics, e.g. QFT and GR
® Thesis on Quantum ML for HEP with IBM Research Zurich

* 2022-Present: PhD with IBM Research & LPNHE at
Sorbonne Université

® Supervised by Bogdan Malaescu (LPNHE) & Shubham Gupta (IBM)

® Also working with Anja Butter (LPNHE), Pierre Feillet (IBM) and
other members of the ATLAS collaboration




Various Activities during PhD

* Workshops * Training
* Sep 2023: 'ATLAS Hadronic * Nov 2022: 'ATLAS Induction Day and
Calibration Workshop' Software Tutorial
®* Oct 2023:Journées de Rencontre e Dec 2022 'MOOC on Scientific
des Jeunes Chercheurs' Integrity '
° 2024 'Inter-experiment Machine o
ernarning'vvorkshop’ * Jun 2023:'Elements of Statistics'
* Aug 2023: 'HEP C++ Essentials Course’
e Outreach * and SMARTHEP schools...

® Oct 2022/2023: 'Féte de la Science’

® ‘My thesis in 5 minutes’
® Guided tours of the lab for the public
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Simultaneous jet calibration with ML
including in situ JER measurement
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Jets Physics

* Jets represent the spray
of particles produced by
the hadronization of a
quark or gluon o,

Hard scatter Showering  Hadronization Hadrons Tracks Calorimeter
energy deposits

%

* Characterised by 4-vector: —7
(B,E) ®
* Exact definition depends%
on jet algorithm (often )
aﬂti-kT algO r|thm7) Jet: collimated spray of partons, hadrons or ener osits.

* Calibration is essential et jet
because energy deposits
differ depending on
particle

(figure from Louis Ginabat, ATLAS collaboration, 2023)

1(“The anti-kt jet clustering algorithm”, Cacciari et al., 2008)



https://dx.doi.org/10.1088/1126-6708/2008/04/063

Jets Physics

* Jets represent the spray
of particles produced by
the hadronization of a
quark or gluon o,

* Characterised by 4-vector:
(B, E) 9
* Exact definition depends%
on jet algorithm (often )
anti-kT algO I’Ithm7) Jet: collimated spray of partons, hadrons or ener osits.

* Calibration is essential M -
because energy deposits

“Truth” jet “Reco” jet
differ depending on
particle

Hard scatter Showering  Hadronization Hadrons Tracks Calorimeter
energy deposits

&,

(figure from Louis Ginabat, ATLAS collaboration, 2023)

1(“The anti-kt jet clustering algorithm”, Cacciari et al., 2008) 6



https://dx.doi.org/10.1088/1126-6708/2008/04/063

ATLAS Jet Calibration

ML calibration

QT: add in situ info
to ML calibration

Reconstructed pr-density-based  Residual pile-up | Absolute MC-based Global sequential Residual in situ
jets pile-up correction correction calibration ) calibration calibration

Jet finding applied to Applied as a function of Removes residual pile-up Corrects jet 4-momentum Reduces flavour dependence A'residual callbration

tracking- and/or event pile-up p; densi dependence, as a to the particle-level ener and energy leakage effects —is applied only to data
calorimeter-based inputs. a%d jep a%a. v func@ion of tand N,,. scale. Bom the energy a% using calorimeter, track, and ~ to correct for data/MC
direction are calibrated. muon-segment variables. differences.

* On-going studies to replace current multi-step calibration scheme by ML
model’

® Current research: try to merge Absolute MC-based Calibration (MCJES) and Global
Sequential Calibration (GSC) for faster testing of new algorithms using MC samples

* My QT: optimise jet energy resolution (JER) including information from exp.
data (in addition to MC samples)

(figure from “Jet enerqy scale and resolution measured in proton-proton collisions at \/s = 13 TeV with the ATLAS detector”, ATLAS collaboration, 2021)
1 (“New techniques for jet calibration with the ATLAS detector”, ATLAS collaboration, 2023)



http://arxiv.org/abs/2007.02645
http://arxiv.org/abs/2303.17312

ML Model for Jet Calibration

* Regression problem

® Output s a probability distribution: (upy, op,.)

® Mean corresponds to calibration factor

* Deep sets!

® Constructed using 2 NN, 1 for jet constituents, 1 for

jet 4-vector

® Model contains permutation invariant layer (e.g.
sum layer) because order of events doesn’t matter

® Supervised learning problem:

® Compare truth u to reco level u(8), ¢(6)

® Likelihood £(8) =

1
\2ma?(6) exp (

202(0)

® lossg(8) = mgin( —log L(6))
1(u(8) — w?

= min [E

a*(6)

+logo(0) + const. |

_ (wO)-w?

)

Constituents

~ 200k parameters

Input

xl u ¢(x1)
N\ X
XeRM

Jet Inputs

B (xy)

RNxM

A

Z

RN

"Machine Learning the MC JES”, K. Greif, C} Pollard, J. Roloff

A

<

n

true true
, ETTEE)

Jet Jet Inputs True Jets Outputs:
Constituents (reco) calibration factor
(Dx> Py» Dz P1) @20y, oM E) | (076, pi e, pi e (p, log(op,)

(80, 4)

()

(5,)

(2,)

T (“Deep sets”, Zaheer et al., 2018),
(“Energy Flow Networks: Deep Sets for Particle Jets”. Komiske et al., 2019)
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https://indico.cern.ch/event/1216301/contributions/5197845/attachments/2577375/4445523/kgreif_ml_workshop%20(2).pdf
http://arxiv.org/abs/1703.06114
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Jet Constituents Jet Inputs (reco) True Jets

(Px» Py> D2 PT) (P2 Dy 1, E) (pirue, pirue, pie,
ntrue Etrue)

Dijet Events

(80 ) )

* For events with at least two hard jets, define
dijet asymmetry’:

ref_ prob ref , prob LI e SN

* A4 = Pr afT Wlth avg pT Pr 2 | Antik, R =0.4 (PFlow+JES) .
Py g ! 2 ! 250 80 = p°[GeV] < 110 —

: 02s‘np°be‘<07

where ref and probe is randomly assigned to the two 2 -
leading jets of every dijet event A -

-~ (Pythia8)

* Momentum conservation implies A = 0 in ideal "t E
case (i.e. no noise, additional jets or other effects) 08¢ g
_ _ . _ o s B I I TP s =S

* For experimental data, we observe distribution "B 0402 0 b2 04 06
. . ijet p_asymmetry

around O where the standard deviation (std) (et energy scale and resalution measured i

depends on reconstructed jet resolution (JER) ATLAS detecto’ ATLAS collaboration, 2021

9
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Minimising Jet Energy Resolution (JER)

* Relative JER can be estimated from o4 (neglecting smearing

. y 0-1'i _ O.c%et N o4 N
from physics effects): L= =~ oy

* Completely independent of true labels = useful for exp. data

* Update loss function:

(0sS(8) = f1 -lossg(8) + f2 - .40

where o4y is the std of A(6)

y |l\/IL model simultaneously minimises the JER measured in-situ and the original
0SS

* No longer fully dependent on truth level, ML model is only partially supervised

1(“Jet energy scale and resolution measured in proton-proton collisions at\/s = 13 TeV with the ATLAS detector”, ATLAS collaboration, 2021)
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http://arxiv.org/abs/2007.02645

Results with f, = 0

* Asymmetry factor fis fixed to O
* ML model doesn't improve/has little effect on JER

®* g4 Ofrecojets (at pileup level): ~ 9.9 %
®* 04 Of regressed jets (i.e. after applying calibration

factors predicted by ML model): ~ 10.7 %
* Can o4 (and therefore JER) be improved by adding

asymmetry term in loss function, i.e. f # 07

|0sS(0) = lossg(0)

Predicted / True Mean
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1.015 A
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ATLAS Simulation Work in Progress
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Testing set: reco jets

Dijet asymmetry for 1000.0 < pr,ayy < 2600.0

ATL/ B Asymmetry
Antikt T Gaussian Fit of histogram with u= — 0.00C‘ o=0.099 )
0.2 =,~~732% quantile, y= — 0.06

--- 68% quantile, y = 0.06 O'CA

ATLAS Simulation
Work in Progress

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

asymmetry

Testing set: regressed jets

Dijet asymmetry for 1000.0 < pr, a4 < 3000.0

01  ATLAS B Asymmetry
Antikt4E 7, Gaussian Fit of histogram with u= 0.00‘ o=0.107 )
1 02=n<77" 32%quantile, y= —0.06
-==- 68% quantile, y =0.06 a.cﬂ
1ATLAS Simulation

Work in Progress

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
asymmetry



Challenges with f; = 0

* Trivial solution: model pushes all pT predictions towards one
constant value which minimises std of asymmetry

* PROBLEM: very unphysical solution, we want the average jet pT
to stay invariant Histogram of et pr

801" ATLAS Simulation . true

>Introduce constraints i e

» Possible constraints € (0):

« Keep batch mean invariant (predicted vs.
initial pT)

« Introduce bins in pT and keep bin mean
iNvariant

40 -

30 A

20 A

10 ~

|OSS(6) RN fl . lOSSG(e) _|_ fZ . O-UQ(Q) _I_ f3 . C(Q) 1700 1800 1900 2000 2100 2200 2300 2400 2500

jet pr [GeV]
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Results with f; = 0

* With constraints for each py bin, the model's predictions

start to look more physical:

Predicted / True Mean

* o4 (and]ER) decrease noticeably

* Predicted and initial jet pr very similar (per bin)

[0SS(8) = 0,49y + 3 - C(6)

True vs reco pr

. J[+ } iﬁ
ey HHE #ﬂ%{# f

pt [GeV]

Resolution

0.06 A

0.05 A

0.04 A

0.02 A

0.01 A

Jet energy resolution (JER)

Testing set: reco jets

Dijet asymmetry for 1900.0 < pr, ayy < 2400.0

ATLAS Simulation Work In Progress
AntiKt4EMPflowJets JEM2 JZ7

17 02=n<07

I B Asymmetry
I ——— Gaussian approx with u=0.00

o)

0_
—0.100 —0.075 —0.050 —0.025 0.000 0.025 0.0500.0.075 0.100

asymmetry

Testing set: regressed jets

Dijet asymmetry for 1920.0 < pr, a9 < 2430.0

ATLAS Simulation Work In Progress
AntiKt4EMPflowJets JETM2 JZ7

BN Asymmetry
——— Gaussian approx with u= —0.00

-0.06 -0.04 -0.02 0.00 0.02

asymmy

ATLAS Sinulation Work In Progress + regressed
AntiKt4EMPflow)ets JETM2 JZ7 <+ pileup
0.2=n<0.7

-

I i# i * %% [ |
T T T T T

1900 2000 2100 2200 2300 cIeNe!
pt [GeV]
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Fraud Detection with IBM
Research

*
*
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Project with IBM: Fraud Detection

* Fraud detection in financial transactions
* High input rate: ~1.5 billion of transactions / day

* Highly imbalanced data: anomalies are very rare but should be
correctly classified

* Essential to understand/explain decisions of model
* New kind of frauds might appear = anomaly detection
* No data available for confidentiality reasons:

* Develop anomaly detection methods for anomalous jet events
* Adapt those methods to fraud detection

15
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SMARTHEP - Conclusion

REAL-TIME ANALYSIS FOR

SCIENCE AND INDUSTRY / \

 Jet calibration with ML
* |dentified asymmetry as physical quantity for improving JER
* Adjusted loss function to include information from experimental data

 Future work:
* Developing anomaly detection method for unusual jet events
* Applying / Transferring method to fraud detection

Thank you for your attention!

S SMARTHEP is funded by the European Union’s Horizon 2020 research and innovation ATLAS - —
MENT e e

Ml programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086
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"“Machine learning is the science of getting computers

M th i ne Leq 'n i ng to act without being explicitly programmed.”

(Andrew Ng, Stanford University)

* Deep learning describes part of ML focusing
on (deep) Neural Networks (NN) peep neural network

° Can be US@d for |ea rnlng more ela bor—ate Input layer Multiple hidden layers Output layer
functions

* In general, learning model tries to optimise a
loss function by repeatedly adjusting its own
parameters

* We distinguish between supervised and
unsupervised learning:

® Supervised: we train the model by comparing the
model’s predictions to a known ground truth (e.g.
mean-squared error)

® Unsupervised:; we don't have any ground truth to
base our training on

18


http://mlclass.stanford.edu/

Deep Sets Model

* Model contains permutation invariant layer (e.g. sum layer)
* Why do we want permutation invariance for jet physics?

* Order of events doesn't matter, each collision event happens independently

® (Can guarantee infrared and collinear (IRC) safety which is important for
comparing QCD theory predictions to experimental results

IRC-Safe Observable Decomposition. An IRC-safe observable O can be approximated
arbitrarily well as:

M
O{p1,...,pm}) =F (Z Zz’%(ﬁi)) 7 (1.2)

where z; is the energy (or pr) and p; the angulan\informjation of particle i.

|

Approximate functions F, ®
with neural networks

1 (“Deep sets”, Zaheer et al., 2018),
(“Enerqgy Flow Networks: Deep Sets for Particle Jets“. Komiske et al., 2019)

19


http://arxiv.org/abs/1703.06114
http://arxiv.org/abs/1810.05165

GSC variables
\

ML Model for Jet Calibration ™

/ segments, pileup etc.

(20,)
. Jet Inputs
® Regression problem
9 Input Output
Output is a probability distribution: (uy,., p,) g
Mean corresponds to calibration factor g - u — / -P- — [b—»f(xl,...,xM)
8 X $(x,)
Constructed using 2 NN, 1 for jet constituents, 1 M NxM N
for jet 4-vector ekl o . "
. . . . "Machine Learning the MC JES”, K. Greif, C} Pollard, J. Roloff
Model contains permutation invariant layer (e.g.
sum layer) because order of events doesn't
matter v
¢ G iced | : bl _ Jet Jet Inputs True Jets Outputs:
upervised iearning prooiem. Constituents (reco) calibration factor
Compare truth u to reco level u(8), o(0) (Px> Py, Pz, PT) (0, Py, 0, E) | 0, 057, p7 8| (pys 108(0p,))
true true
ikeli R _ w@-w* S ETE)
Likelihood £(6) = mexp( =) )
l0ss(0) = min ( —logL(6)) (80,4) (5,) (5,) (2,)
1 (u(0) — p)?
gm [E 52(0) + logo(6) + const. | 1 (“Deep sets“ Zaheer et al., 2018),

(“Energy Flow Networks: Deep Sets for Particle Jets”. Komiske et al., 2019)
20



https://indico.cern.ch/event/1216301/contributions/5197845/attachments/2577375/4445523/kgreif_ml_workshop%20(2).pdf
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Add GSC variables

Calorimeter JLArO-3+% The Ef,c measured in the Oth-3rd layer of the EM LAr calorimeter
STile0s—2 The Ef,c measured in the Oth-2nd layer of the hadronic tile calorimeter
JHEC.0-3 The Ef,c measured in the Oth-3rd layer of the hadronic end cap
calorimeter
frcaL.0-2 | The Eg,c measured in the Oth-2nd layer of the forward calorimeter
Ny, The minimum number of clusters containing 90% of the jet energy
Jet kinematics | pi> * The jet p after the MCJES calibration
ni3t The detector i
Tracking Wirack F The average pr-weighted transverse distance in the n-¢ plane
between the jet axis and all tracks of pt > 1 GeV ghost-associated
with the jet
Nirack ™ The number of tracks with pt > 1 GeV ghost-associated with the jet
feharged ™ The fraction of the jet pt measured from ghost-associated tracks
Muon segments | Ngeoments™ | The number of muon track segments ghost-associated with the jet
Pile-up u The average number of interactions per bunch crossing
Npy The number of reconstructed primary vertices

Table 1: List of variables used as input to the GNNC. Variables with a * correspond to those that are also used by the

GSC.

1(see table 1 in “New techniques for jet calibration with the ATLAS detector”, ATLAS collaboration, 2023)
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Testing set: reco jets

Dijet Asymmetry of JETM2 JZ7  oomesocpao

. e e e ety S

(before Training) e,
JER

3 | ATLAS Simulation

Work in Progress .
n

* Truth dijet asymmetry has non-Gaussian tails estimatio
®* Use Gaussian as a first approximation

* Can be improved by fitting convolution of exponential and
Gaussian function’

=
1

* Goal is to minimise JER 020 -015 010 005 0% 005 O0io ol
* (Cannot get better than truth level Testing set: true jets
® True asymmetry is limited by smearing from physics effect ATLD:V::W 10000 = Priewy <2000 §
* After training: W] B e o5 S D
* Apply predicted calibration factors to uncalibrated test | Arus simuiaton
samples
* C(Check their pr distribution, dijet asymmetry & estimate the
JER from it
* Callthem regressed jets’ a

0_

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

asymmetry

1(“Jet enerqy scale and resolution measured in proton-proton collisions at \/s = 13 TeV with the ATLAS detector”, ATLAS collaboration, 2021) 22



http://arxiv.org/abs/2007.02645

Input data Jet Constituents Jet Inputs

I n p u 1': M C Sq m p I eS old ®x: Py» Pz, PT) (Px: Py, Pz, P, E)

new (Pxs Py, Pro 1), (o)
* Old input samples: i€11,2,3) i€{1,2,3}
* Perevent: 1-2 leading jets, no event info
* Alljets are treated independently Jet 1

* |solated jets, lots of monojet events
* Empty entries are filled with mask value: O
* Info about masking will be passed on to NN

* Modified input samples: Jet 3

* Keep event info of 3 leading jets
* Empty entries are filled with same mask value
* Additional features: GSC variables (22 add. Variables)

* Motivation: apply dijet topology cuts on jet components to ensure good pr
balance between leading jets




Input: Selection Criteria

* Centraljets (to simplity problem, will be extended) Jettz
In| € [0.2,0.7]

* Apply dijet topology cuts’ on jet components to ensure good pr
balance between leading jets

Ap, > 2.7 rad
pry < max(25 GeV,0.25 - prgpg)

* pT between 1800 and 2400 GeV because using |Z7/
° [ater add more JZ slices, e.g. study lower pT region
» Cutoutliers (i.e. badly reconstructed jets)

1 (“Jet enerqy scale and resolution measured in proton-proton collisions at v/s = 13 TeV with the ATLAS detector”, ATLAS collaboration, 2021)
24
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Input: Jet Components @ = M

* Events have been resampled to
flatten distribution of log p

where pr"? = (pr, + pr,)/2

®* This approach was chosen because
logpy 7 is physically significant

* PROBLEM:

* Resampling assigns some very
large weights to certain events

*  Weights differ by several orders of

magnitude

=

o
S
L

103 4

102 4

101

100 4

New MC samples: resampled

jet without mask values

kol 20000

A

X_2 _py_2 _eta_2 E2

<2500 0 2500 —2500 0 2500 2500 5000

40000

2 20000

200, —2500 0 2500 -2500 O 2500 -2 0 2 0 5000

_pt 3 _px_3 _py_3 _eta_3 _E3
75000 B
m 50000
25000
2000 -—10000 1000 —2000 0 .50.0 2.5 -0 2500
Before resampling With resampling

P, avg Of 2 leading jets Pr,avg Of 2 leading jets

103 4

102

101 4

10° 4

6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0
log pr, avg
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First results: f =0vs f #0

f=0

f#0

* Asymmetry factor f is fixed to O

* Predicted pT values:
* plrue € 1100,2600] GeV
* pr €[1000,3000] GeV

* JER estimation:

* JER of jets before training: ~ 9.9 %

®* JER of regressed jets (i.e. after

applying calibration factors
predicted by ML model). ~ 10.7 %

- First naive implementation failed!

* Asymmetry factor f is varied
between 0 and 10

* Predicted pT values:

* ple e11100,2600] GeV

°* pr €[-=1'792'700,394'000] GeV
* JER estimation:

* JER of jets before training: ~ 9.9 %

®* JER of regressed jets (i.e. after

applying calibration factors
predicted by ML model): ~10.2 %

26



First Results with f # 0

2.0 4

1.8 A

Predicted / True Mean

=
]
L

1.0

Predicted pT much worse
Predicted JER slightly better:

* JER of jets before training: ~ 9.9 %

* JERof regressed jets (i.e. after applying calibration
factors predicted by ML model): ~10.2 %

=
(=]
1

=
o+
1

ATLAS SimulationWork in Progress -+ + r?gressed
AntiKtaEMPflowjets JETM2 JZ7 + pileup
02=n<07
_I m_-_
1600 1800 2000 2200 2400
pt [GeV]

Problem: \Why do we have
negative calibration factors?

Testing set: reco jets

1 Work in Progress

Dijet asymmetry for 1100.0 < pr, 5y < 2600.0

ATL/ B Asymmetry
Antikt T~ Gaussian Fit of histogram with u= —0.0 o=0.099 )

02 <,~~7 32% quantile, y = — 0.06
JER

—-—- 68% quantile, y =0.06
ATLAS Simulation . .
estimatiol

=

-0.20 -0.15 -0.10 -0.05 0.00
asymmetry

Testing set. regressed

-1792700.0 Ypr, avg

0.05 0.10 0.15

jets

394000.0
S

0.20

Dijet asymmetry fd

-0.20 -0.15 -0.10 -0.05 0.00

ATL B Asymmetr
—0.00Q,0=0.102 >

Antikt T G3 n Fit of histogram with u=
02=/ 2% quantile, y = — 0.06
—-—- 68% quantile, y =0.06 JER
ATLAS Simulation . .
estimation

Work in Progress

0.05

0.10 0.15 0.20

asymmetry
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\.
Q" GSC variables

W h CI T,S n eXT Energy fractions,

tracking, detector

eta, muon
segments, pileup
: , : : etc.
* Naive approach doesn't work immediately (20,)
* |t seems the two loss terms
contradict/work against each other Jernpus .
]
® Add softplus layer to restrict outputs of NN to 5 g co- =D — s
positive values’ 5 x, Z p
® |ntroduce penalty term that forbids Xert o . [

"Machine Learning the MC JES”, K. Greif, C. Ppllard, J. Roloff

unphysical solution
® Standardise truth targets

—l

A 4

Jet Jet Inputs True Jets Outputs:
. . Constituents (reco) calibration factor
* Use GSC variables? (which are known to
. . - . (Px» Py» Pz PT) (Pxr Py, P11, E) "y pr ) (Mg 108(0p,))
improve JER) in addition to jet 4-vector as T
Jet inputs (80,4) 5) 5) @)

1(“tf.math.softplus”, TensorFlow, September 2022),
2 (“New techniques for jet calibration with the ATLAS detector”, ATLAS collaboration, 2023) 28
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Testing set: reco jets

Dijet asymmetry for 1100.0 < pr, a9 < 2600.0

ATL/ B Asymmetry

[ ]
More results with f # 0 | B e e ooy
0.2 =,~~732% quantile, y= — 0.06

-=-=- 68% quantile, y =0.06
JER

ATLAS Simulation . .
1 Work in Progress estimatio

* New variables added
* Softplus layer applied

* Predicted / True ratio pf pT is getting closer to 1 but JER
IS worse

®* JERofreco jets: ~9.9 % ssymmetry

* JER of regressed jets (i.e. after applying calibration Testing set: regressed je
factors predicted by ML model): ~12.7 % Dijet asymmetry r 900.0 5 ).

ATLI- Asymmetr
TLAS Simulation Work in Progress + regressed 351 AntiKt TP 38 uanii'lte"f h;St:)%rgz with p= ‘°-°<' o =°-127:>
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