

Jet calibration with data-based ML training and identifying anomalies for applications in HEP and Finance

SMARTHEP Annual Meeting

27th of November 2023 Laura Boggia

About Me...

- Swiss & Italian
- Grew up in Switzerland
- 2017-2020: BSc in Physics at EPFL
- 2020-2022: MSc in Physics at ETH
 - Focus on Theoretical Physics, e.g. QFT and GR
 - Thesis on Quantum ML for HEP with IBM Research Zurich
- 2022-Present: PhD with IBM Research & LPNHE at Sorbonne Université
 - Supervised by Bogdan Malaescu (LPNHE) & Shubham Gupta (IBM)
 - Also working with Anja Butter (LPNHE), Pierre Feillet (IBM) and other members of the ATLAS collaboration

Various Activities during PhD

- Workshops
 - Sep 2023: 'ATLAS Hadronic Calibration Workshop'
 - Oct 2023: 'Journées de Rencontre des Jeunes Chercheurs'
 - Jan 2024: 'Inter-experiment Machine Learning Workshop'
- Outreach
 - Oct 2022/2023: 'Fête de la Science'
 - 'My thesis in 5 minutes'
 - Guided tours of the lab for the public

- Training
 - Nov 2022: 'ATLAS Induction Day and Software Tutorial'
 - Dec 2022: 'MOOC on Scientific Integrity'
 - Jun 2023: 'Elements of Statistics'
 - Aug 2023: 'HEP C++ Essentials Course'
 - and SMARTHEP schools...

Simultaneous jet calibration with ML including in situ JER measurement

Jets Physics

• **Jets** represent the spray of particles produced by Hard scatter the hadronization of a quark or gluon

• Characterised by 4-vector: (\vec{p}, E)

- Exact definition depends on jet algorithm (often anti-kT algorithm¹)
- Calibration is essential because energy deposits differ depending on particle

Showering Hadronization Hadrons Tracks Calorimeter energy deposits

Jet: collimated spray of partons, hadrons or energy deposits.

(figure from Louis Ginabat, ATLAS collaboration, 2023)

Jets Physics

• **Jets** represent the spray of particles produced by Hard scatter the hadronization of a quark or gluon

• Characterised by 4-vector: (\vec{p}, E)

- Exact definition depends on jet algorithm (often anti-kT algorithm¹)
- Calibration is essential because energy deposits differ depending on particle

Jet: collimated spray of partons, hadrons or energy deposits.

(figure from Louis Ginabat, ATLAS collaboration, 2023)

ATLAS Jet Calibration ML calibration QT: add in situ info to ML calibration Reconstructed p_{T} -density-based Residual pile-up Residual in situ **Absolute MC-based** Global sequential pile-up correction jets correction calibration calibration calibration Corrects jet 4-momentum to the particle-level energy scale. Both the energy and Reduces flavour dependence Jet finding applied to Applied as a function of Removes residual pile-up A residual calibration and energy leakage effects using calorimeter, track, and is applied **only to data** to correct for data/MC tracking- and/or calorimeter-based inputs. event pile-up p_T density dependence, as a and jet area. function of μ and N_{PV} . differences. muon-segment variables. direction are calibrated.

- On-going studies to replace current multi-step calibration scheme by ML model¹
 - Current research: try to merge Absolute MC-based Calibration (MCJES) and Global Sequential Calibration (GSC) for faster testing of new algorithms using MC samples
- My QT: optimise jet energy resolution (JER) including information from exp. data (in addition to MC samples)

ML Model for Jet Calibration

- Regression problem
 - Output is a probability distribution: $(\mu_{p_T}, \sigma_{p_T})$
 - Mean corresponds to calibration factor
- Deep sets¹
 - Constructed using 2 NN, 1 for jet constituents, 1 for jet 4-vector
 - Model contains permutation invariant layer (e.g. sum layer) because order of events doesn't matter
- Supervised learning problem:
 - Compare truth μ to reco level $\mu(\theta)$, $\sigma(\theta)$
 - Likelihood $\mathcal{L}(\theta) = \frac{1}{\sqrt{2\pi\sigma^2(\theta)}} \exp\left(-\frac{(\mu(\theta)-\mu)^2}{2\sigma^2(\theta)}\right)$
 - $\log s_G(\theta) = \min_{\theta} (-\log \mathcal{L}(\theta))$ $= \min_{\theta} \left[\frac{1}{2} \frac{(\mu(\theta) \mu)^2}{\sigma^2(\theta)} + \log \sigma(\theta) + \text{const.} \right]$

Jet Constituents	Jet Inputs (reco)	True Jets	Outputs: calibration factor
(p_x, p_y, p_z, p_T)	(p_x, p_y, p_T, η, E)	$(p_x^{true}, p_y^{true}, p_T^{true}, otag ot$	$(\mu_{p_T}, \log(\sigma_{p_T}))$
(80, 4)	(5,)	(5,)	(2,)

1 ("<u>Deep sets</u>", Zaheer et al., 2018),

("Energy Flow Networks: Deep Sets for Particle Jets". Komiske et al., 2019)

Dijet Events

Jet Constituents	Jet Inputs (reco)	True Jets
(p_x, p_y, p_z, p_T)	(p_x, p_y, p_7, η, E)	$(p_x^{true},p_y^{true},p_T^{true},\ \eta^{true},E^{true})$
(80,4)	(5,)	(5,)

• For events with at least two hard jets, define dijet asymmetry¹:

•
$$\mathcal{A}=rac{p_T^{ref}-p_T^{prob}}{p_T^{avg}}$$
, with $p_T^{avg}=rac{p_T^{ref}+p_T^{prob}}{2}$,

where ref and probe is randomly assigned to the two leading jets of every dijet event

- Momentum conservation implies $\mathcal{A} = \mathbf{0}$ in ideal case (i.e. no noise, additional jets or other effects)
- For experimental data, we observe distribution around 0 where the standard deviation (std) depends on reconstructed jet resolution (JER)

¹ ("<u>Jet energy scale and resolution measured in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector</u>", ATLAS collaboration, 2021)

Minimising Jet Energy Resolution (JER)

- Relative JER can be estimated from $\sigma_{\mathcal{A}}$ (neglecting smearing from physics effects): $\frac{\sigma_{p_T}}{p_T} = \frac{\sigma_{\mathcal{A}}^{det}}{\sqrt{2}} \cong \frac{\sigma_{\mathcal{A}}}{\sqrt{2}} \sim \sigma_{\mathcal{A}}$
 - Completely independent of true labels → useful for exp. data
- Update loss function:

$$loss(\theta) = f_1 \cdot loss_G(\theta) + f_2 \cdot \sigma_{\mathcal{A}(\theta)}$$

where $\sigma_{\mathcal{A}(\theta)}$ is the std of $\mathcal{A}(\theta)$

- ML model simultaneously minimises the JER measured in-situ and the original loss
- No longer fully dependent on truth level, ML model is only partially supervised

Results with $f_2 = 0$

- Asymmetry factor f is fixed to 0
- ML model doesn't improve/has little effect on JER
 - $\sigma_{\mathcal{A}}$ of reco jets (at pileup level): ~ 9.9 %
 - $\sigma_{\mathcal{A}}$ of regressed jets (i.e. after applying calibration factors predicted by ML model): ~ 10.7 %
- Can $\sigma_{\mathcal{A}}$ (and therefore JER) be improved by adding asymmetry term in loss function, i.e. $f \neq 0$?

 $loss(\theta) = loss_G(\theta)$

Testing set: reco jets

Testing set: regressed jets

Challenges with $f_1 = 0$

 Trivial solution: model pushes all pT predictions towards one constant value which minimises std of asymmetry

• PROBLEM: very unphysical solution, we want the average jet pT

to stay invariant

→Introduce constraints

- Possible constraints $C(\theta)$:
 - Keep batch mean invariant (predicted vs. initial pT)
 - Introduce bins in pT and keep bin mean invariant

$$loss(\theta) \rightarrow f_1 \cdot loss_G(\theta) + f_2 \cdot \sigma_{\mathcal{A}(\theta)} + f_3 \cdot C(\theta)$$

Results with $f_1 = 0$

- With constraints for each p_T bin, the model's predictions start to look more physical:
 - $\sigma_{\mathcal{A}}$ (and JER) decrease noticeably
 - Predicted and initial jet p_T very similar (per bin)

$$loss(\theta) = \sigma_{\mathcal{A}(\theta)} + 3 \cdot C(\theta)$$

Testing set: reco jets

Dijet asymmetry for $1900.0 \le p_{T, avg} < 2400.0$

Testing set: regressed jets

Dijet asymmetry for $1920.0 \le p_{T, avg} < 2430.0$

Fraud Detection with IBM Research

Project with IBM: Fraud Detection

- Fraud detection in financial transactions
 - High input rate: ~1.5 billion of transactions / day
 - Highly imbalanced data: anomalies are very rare but should be correctly classified
 - Essential to understand/explain decisions of model
- New kind of frauds might appear → anomaly detection
- No data available for confidentiality reasons:
 - Develop anomaly detection methods for anomalous jet events
 - Adapt those methods to fraud detection

Conclusion

- Jet calibration with ML
 - Identified asymmetry as physical quantity for improving JER
 - Adjusted loss function to include information from experimental data
- Future work:
 - Developing anomaly detection method for unusual jet events
 - Applying / Transferring method to fraud detection

Thank you for your attention!

Backup

Machine Learning

"Machine learning is the science of getting computers to act without being explicitly programmed."

(Andrew Ng, Stanford University)

- Deep learning describes part of ML focusing on (deep) Neural Networks (NN)
- Can be used for learning more elaborate functions
- In general, learning model tries to optimise a loss function by repeatedly adjusting its own parameters
- We distinguish between supervised and unsupervised learning:
 - Supervised: we train the model by comparing the model's predictions to a known ground truth (e.g. mean-squared error)
 - Unsupervised: we don't have any ground truth to base our training on

Deep Sets Model

- Model contains permutation invariant layer (e.g. sum layer)
- Why do we want permutation invariance for jet physics?
 - Order of events doesn't matter, each collision event happens independently
 - Can guarantee infrared and collinear (IRC) safety which is important for comparing QCD theory predictions to experimental results

IRC-Safe Observable Decomposition. An IRC-safe observable \mathcal{O} can be approximated arbitrarily well as:

$$\mathcal{O}(\{p_1,\ldots,p_M\}) = F\left(\sum_{i=1}^M z_i \Phi(\hat{p}_i)\right), \qquad (1.2)$$

where z_i is the energy (or p_T) and \hat{p}_i the angular information of particle i.

Approximate functions F, Φ with neural networks

GSC variables

Energy fractions, tracking, detector eta, muon segments, pileup etc.

(20,)

ML Model for Jet Calibration

Regression problem

Output is a probability distribution: $(\mu_{p_T}, \sigma_{p_T})$ Mean corresponds to calibration factor

Deep sets¹

Constructed using 2 NN, 1 for jet constituents, 1 for jet 4-vector

Model contains permutation invariant layer (e.g. sum layer) because order of events doesn't matter

Supervised learning problem:

Compare truth μ to reco level $\mu(\theta)$, $\sigma(\theta)$

Likelihood
$$\mathcal{L}(\theta) = \frac{1}{\sqrt{2\pi\sigma^2(\theta)}} \exp\left(-\frac{(\mu(\theta)-\mu)^2}{2\sigma^2(\theta)}\right)$$

$$\log S(\theta) = \min_{\theta} \left(-\log \mathcal{L}(\theta)\right)$$

$$= \min_{\theta} \left[\frac{1}{2} \frac{(\mu(\theta)-\mu)^2}{\sigma^2(\theta)} + \log \sigma(\theta) + \text{const.}\right]$$

Jet Inputs

Jet Constituents	Jet Inputs (reco)	True Jets	Outputs: calibration factor
(p_x, p_y, p_z, p_T)	(p_x, p_y, p_T, η, E)	$(p_x^{true}, p_y^{true}, p_T^{true}, otag ot$	$(\mu_{p_T}, \log(\sigma_{p_T}))$
(80, 4)	(5,)	(5,)	(2,)

1 ("Deep sets", Zaheer et al., 2018),

("Energy Flow Networks: Deep Sets for Particle Jets". Komiske et al., 2019)

Add GSC variables

Calorimeter	$f_{\rm LAr0-3*}$	The E_{frac} measured in the 0th-3rd layer of the EM LAr calorimeter	
	$f_{\text{Tile}0*-2}$	The $E_{\rm frac}$ measured in the 0th-2nd layer of the hadronic tile calorimeter	
	$f_{\rm HEC,0-3}$	The $E_{\rm frac}$ measured in the 0th-3rd layer of the hadronic end cap	
		calorimeter	
	$f_{\text{FCAL},0-2}$	The E_{frac} measured in the 0th-2nd layer of the forward calorimeter	
	$N_{90\%}$	The minimum number of clusters containing 90% of the jet energy	
Jet kinematics	$p_{\mathrm{T}}^{\mathrm{JES}}$ *	The jet $p_{\rm T}$ after the MCJES calibration	
	$\eta^{ m det}$	The detector η	
Tracking	Wtrack*	The average p_T -weighted transverse distance in the η - ϕ plane	
		between the jet axis and all tracks of $p_T > 1$ GeV ghost-associated	
		with the jet	
	$N_{ m track}*$	The number of tracks with $p_T > 1$ GeV ghost-associated with the jet	
	$f_{ m charged}*$	The fraction of the jet p_T measured from ghost-associated tracks	
Muon segments	$N_{\text{segments}}*$	The number of muon track segments ghost-associated with the jet	
Pile-up	μ	The average number of interactions per bunch crossing	
	$N_{ m PV}$	The number of reconstructed primary vertices	

Table 1: List of variables used as input to the GNNC. Variables with a * correspond to those that are also used by the GSC.

Dijet Asymmetry of JETM2 JZ7 (before Training)

- Truth dijet asymmetry has non-Gaussian tails
 - Use Gaussian as a first approximation
 - Can be improved by fitting convolution of exponential and Gaussian function¹
- Goal is to minimise JER
 - Cannot get better than truth level
 - True asymmetry is limited by smearing from physics effect
- After training:
 - Apply predicted calibration factors to uncalibrated test samples
 - Check their p_T distribution, dijet asymmetry & estimate the JER from it
 - Call them 'regressed jets'

Testing set: reco jets

¹ ("<u>Jet energy scale and resolution measured in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector</u>", ATLAS collaboration, 2021)

Input: MC Samples

	Input data		Jet Inputs	
	old	(p_x, p_y, p_z, p_T)	(p_x, p_y, p_z, p_T, E)	
•	new	$(p_{\mathbf{x}_{l}}, p_{\mathbf{y}_{l}}, p_{T_{l}}, \eta_{i}),$ $i \in \{1, 2, 3\}$	$(p_{T_i}),$ $i \in \{1, 2, 3\}$	

- Old input samples:
 - Per event: 1-2 leading jets, no event info
 - All jets are treated independently
 - Isolated jets, lots of monojet events
 - Empty entries are filled with mask value: 0
 - Info about masking will be passed on to NN
- Modified input samples:
 - Keep event info of 3 leading jets
 - Empty entries are filled with same mask value
 - Additional features: GSC variables (22 add. Variables)
- Motivation: apply dijet topology cuts on jet components to ensure good p_T balance between leading jets

Input: Selection Criteria

Central jets (to simplify problem, will be extended)

$$|\eta| \in [0.2, 0.7]$$

$$\Delta\phi_{12}>2.7$$
 rad

$$p_{T_3} < \max(25 \text{ GeV}, 0.25 \cdot p_{T,avg})$$

- pT between 1800 and 2400 GeV because using JZ7
 - Later add more JZ slices, e.g. study lower pT region
- Cut outliers (i.e. badly reconstructed jets)

Input: Jet Components

- Events have been resampled to flatten distribution of $\log p_T^{avg}$ where $p_T^{avg} = (p_{T_1} + p_{T_2})/2$
 - This approach was chosen because $\log p_T^{avg}$ is physically significant
- PROBLEM:
 - Resampling assigns some very large weights to certain events
 - Weights differ by several orders of magnitude

New MC samples: resampled

First results: f = 0 vs $f \neq 0$

$$f = 0$$

- Asymmetry factor f is fixed to 0
- Predicted pT values:
 - $p_T^{true} \in [1100, 2600] \text{ GeV}$
 - $p_T \in [1000, 3000] \text{ GeV}$
- JER estimation:
 - JER of jets before training: ~ 9.9 %
 - JER of regressed jets (i.e. after applying calibration factors predicted by ML model): ~ 10.7 %

- $f \neq 0$
- Asymmetry factor f is varied between 0 and 10
- Predicted pT values:
 - $p_T^{true} \in [1100, 2600] \text{ GeV}$
 - $p_T \in [-1'792'700, 394'000] \text{ GeV}$
- JER estimation:
 - JER of jets before training: ~ 9.9 %
 - JER of regressed jets (i.e. after applying calibration factors predicted by ML model): ~ 10.2 %

First Results with $f \neq 0$

- Predicted pT much worse
- Predicted JER slightly better:
 - JER of jets before training: ~ 9.9 %
 - JER of regressed jets (i.e. after applying calibration factors predicted by ML model): ~ 10.2 %

Problem: Why do we have negative calibration factors?

What's next

- Naive approach doesn't work immediately
- It seems the two loss terms contradict/work against each other
 - Add softplus layer to restrict outputs of NN to positive values¹
 - Introduce penalty term that forbids unphysical solution
 - Standardise truth targets
- Use **GSC variables**² (which are known to improve JER) in addition to jet 4-vector as jet inputs

More results with $f \neq 0$

- New variables added
- Softplus layer applied
- Predicted / True ratio pf pT is getting closer to 1 but JER is worse
 - JER of reco jets: ~ 9.9 %
 - JER of regressed jets (i.e. after applying calibration factors predicted by ML model): ~ 12.7 %

Problem: pT predictions are still off

