Neutron star cooling with lepton-flavor-violating axions

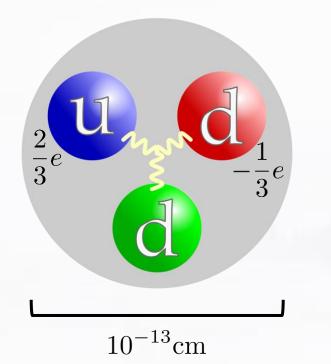
Hong-Yi Zhang, Rice University @ Texas Rice TACOS

Oct 9, 2023

Zhang & Long (+ Hagimoto) 2309.03889

Talk structure

Axions


Neutron star (NS) cooling with lepton-flavorviolating (LFV) axions

Structure and cooling of NSs

Axion emissivity and constraints

Future directions and summary

Axions & axionlike particles

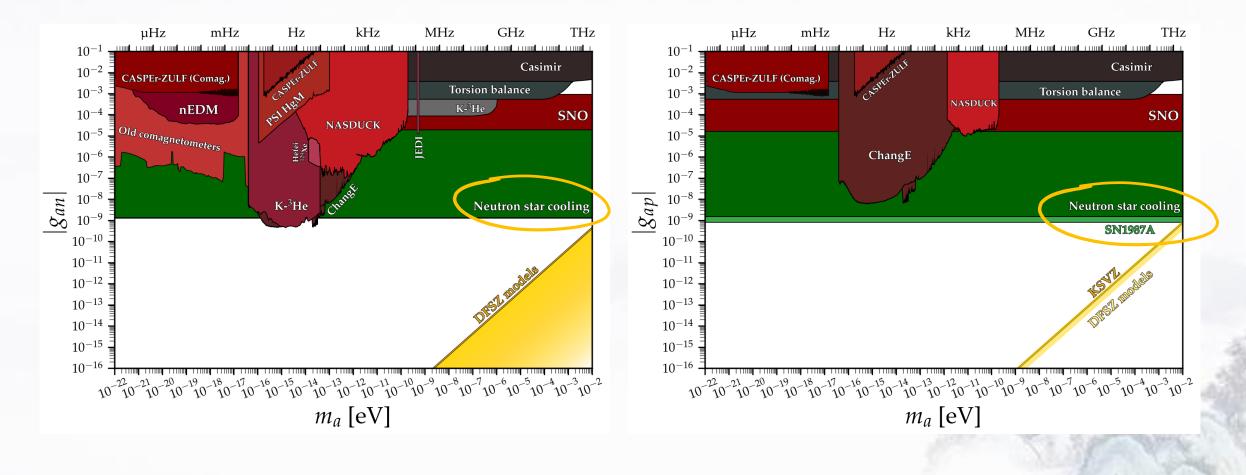
Order of magnitude guess for neutron EDM $\sim 10^{-13} e \text{ cm}$

Strong CP problem: Why is $\overline{\Theta}$ so small?

Theoretically, neutron EDM $\sim \bar{\Theta} \ 10^{-16} e \ {
m cm}$

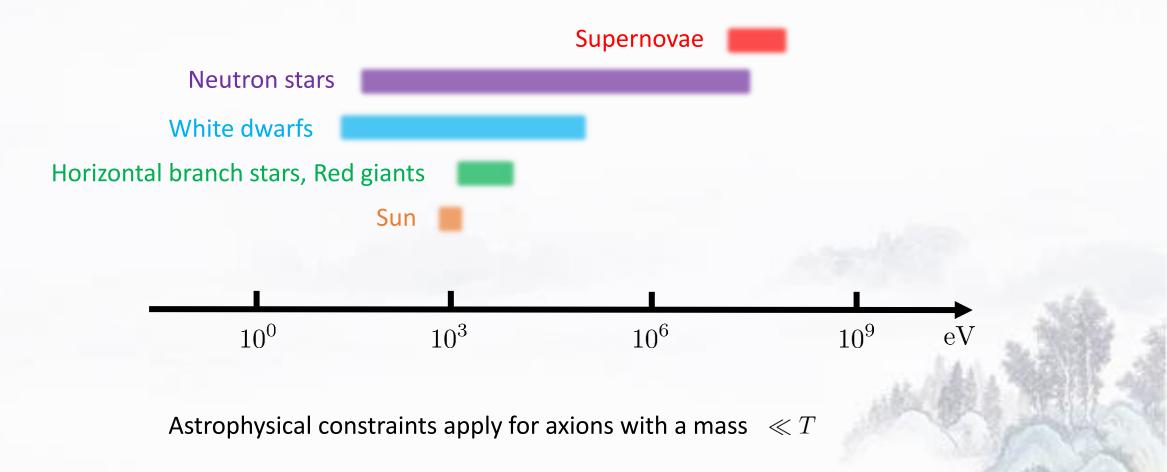
Experimentally, neutron EDM $< 10^{-26} e \text{ cm}$

Peccei-Quinn mechanism can solve the problem

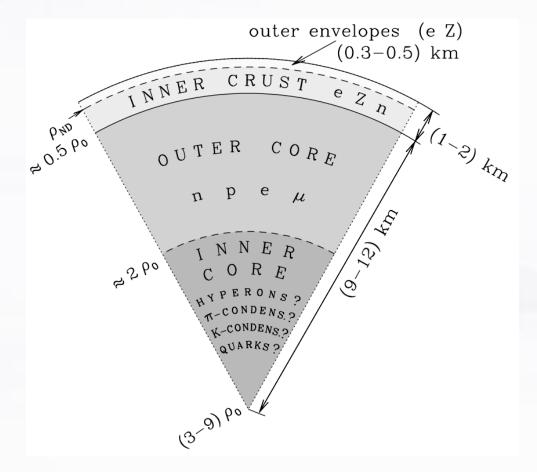

Broken $U(1)_{PQ}: \bar{\Theta} \to \bar{\Theta} - \frac{a}{f_a}$ *a* is locked at the potential minimum $\bar{\Theta}f_a$ *a* is a new type of particles, called axions

 $m_a \approx 5.7 \left(\frac{10^9 \text{GeV}}{f_a}\right) \text{meV}$

Peccei, Quinn (1977) Weinberg (1978) Wilczek (1978)

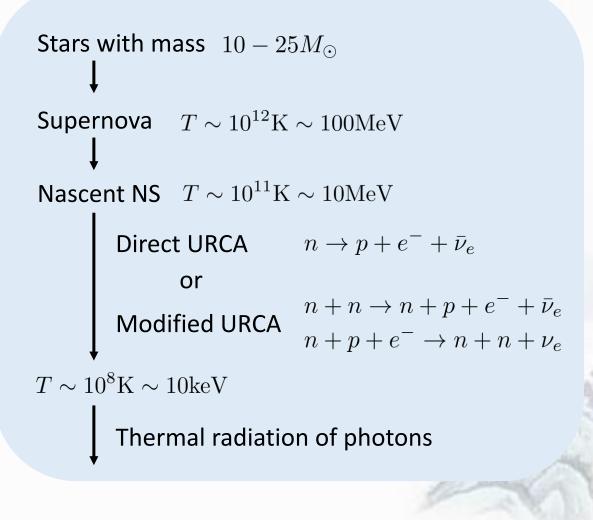

String theory predicts a landscape of pseudoscalars

Axion constraints



Credit: Ciaran O'Hare

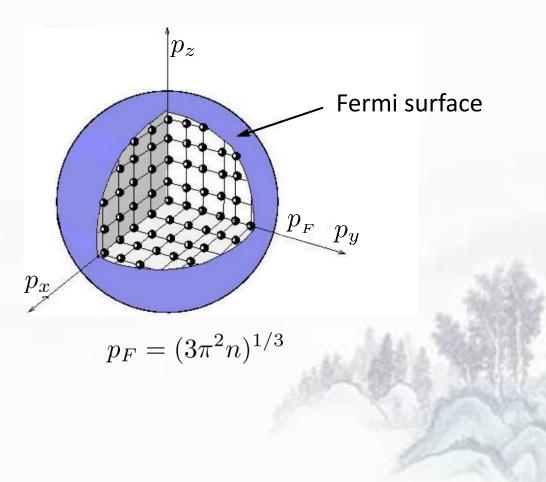
Axion mass range in astrophysical probes



Neutron star cooling 101

Haensel (2007)

 $\rho_{\rm ND} \approx 4 \times 10^{11} {\rm g/cm^3}$ $\rho_0 \approx 3 \times 10^{14} {\rm g/cm^3}$



Fermi surface for degenerate particles

Typical Fermi kinetic energy at $ho \sim 10^{15} {\rm gm/cm^3}$

 $\mathcal{E}_n \sim 180 \mathrm{MeV}$ $\mathcal{E}_p \sim 20 \mathrm{MeV}$ $\mathcal{E}_e \sim 160 \mathrm{MeV}$ $\mathcal{E}_\mu \sim 60 \mathrm{MeV}$

(assuming $m_N^* = 0.8 m_N$)

Constraining axions with neutron star cooling

Energy output / time / volume

$$\varepsilon_{a} = \int \frac{d^{3}p_{1}}{(2\pi)^{3}2E_{1}} \frac{d^{3}p_{2}}{(2\pi)^{3}2E_{2}} \frac{d^{3}p_{1}}{(2\pi)^{3}2E_{1}'} \frac{d^{3}p_{2}}{(2\pi)^{3}2E_{2}'} \frac{d^{3}p_{a}}{(2\pi)^{3}2E_{2}} E_{a}f_{1}f_{2}$$

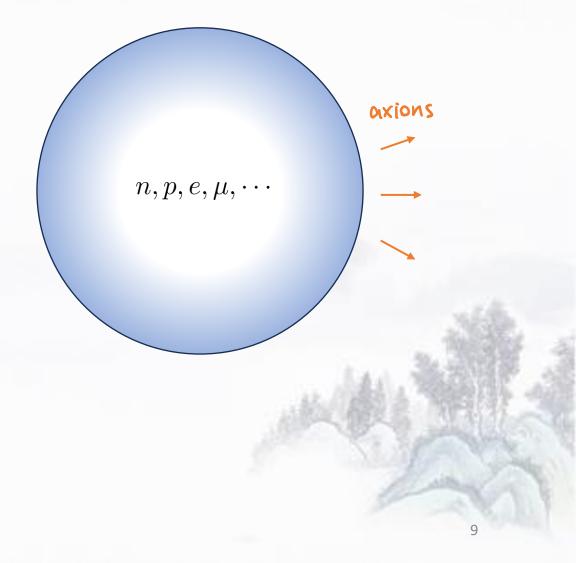
$$\times (1 - f_{1}')(1 - f_{2}')(2\pi)^{4}\delta^{4}(p_{1} + p_{2} - p_{1}' - p_{2}' - p_{a}) \sum_{\text{spins}} |\mathcal{M}|^{2}$$
Pauli blocking factors
$$E_{F}$$
To be consistent with NS cooling

observations, we require

 $\varepsilon_a < \varepsilon_{\nu}$

 $f(E) \approx \theta(E - E_F)$ $1 - f(E) \approx \theta(E_F - E)$

Lepton flavor violation

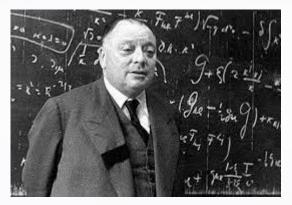

Why?

٠

...

- No compelling reason for zero LFV
- Radiative corrections
- No exact global symmetry is expected in quantum gravity

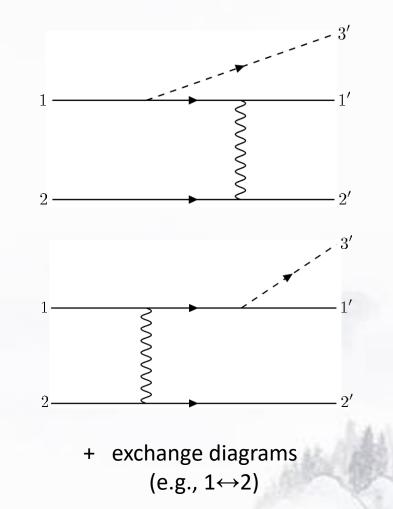
 $\mathcal{L} \supset \frac{g_{ae\mu}}{4m_e} (\overline{\psi}_e \gamma^{\rho} \gamma_5 \psi_{\mu} + \overline{\psi}_{\mu} \gamma^{\rho} \gamma_5 \psi_e) \partial_{\rho} a$

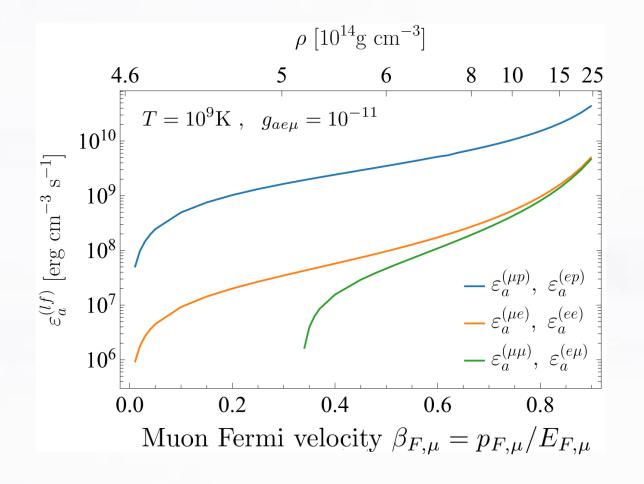


Lepton flavor violation

$$\mu \to e + a$$
 $\operatorname{Br}(\mu \to ea) \approx 7.0 \times 10^{15} g_{ae\mu}^2$

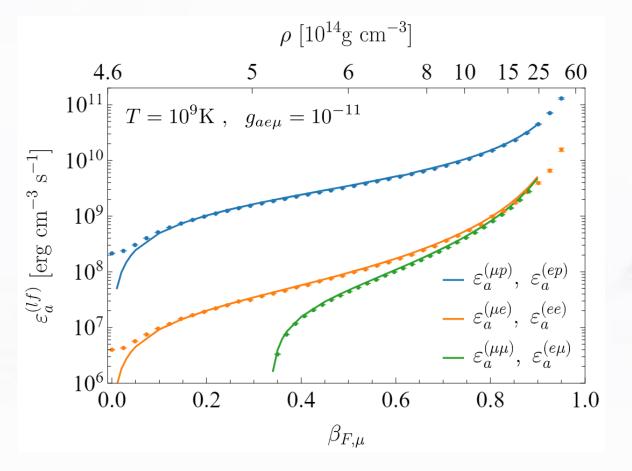
$$l + f \rightarrow l' + f + a \quad - \quad l' = e, \mu$$
$$l' = \mu, e$$
$$f = p, e, \mu$$


Lepton flavor violation


Muon decay is Pauli blocked

$$\underbrace{ \begin{array}{l} \textcircled{} \\ \hline \end{array} } l+f \rightarrow l'+f+a \end{array} \cdot \begin{bmatrix} l=e,\mu \\ l'=\mu,e \\ f=p,e,\mu \end{bmatrix}$$

Momentum threshold:
$$p_{F,f} > rac{p_{F,e} - p_{F,\mu}}{2}$$


Axion emissivity

At the typical value $\beta_{F,\mu} = 0.84$ $\varepsilon_a^{\text{LFV}} = 4.8 \times 10^{32} g_{ae\mu}^2 \left(\frac{T}{10^9 \text{K}}\right)^8$ $\varepsilon_a^{\text{LFV}} < \varepsilon_{\text{MURCA}} \Rightarrow |g_{ae\mu}| < 3 \times 10^{-6}$ $\varepsilon_a^{\text{LFV}} < \varepsilon_{\text{SN}} \Rightarrow |g_{ae\mu}| < 4 \times 10^{-11} \left(\frac{T}{50 \text{MeV}}\right)^4$

(assuming $m_N^* = 0.8 m_N$)

Brute force calculations

Monte Carlo integration based on the VEGAS algorithm

Constraints on the LFV coupling

$ g_{ae\mu} $	$\frac{2f_a}{C_{ae\mu}}$ [GeV]	${ m Br}(\mu o ea)$	$m_a \; [{ m MeV}]$	Experiment
$< 3.0 \times 10^{-6}$			$\lesssim 1$	NS cooling
$\lesssim 8 \times 10^{-10}$	$\gtrsim 1 \times 10^8$	$\lesssim 4 \times 10^{-3}$	$\lesssim 50$	SN 1987A, $\mu \rightarrow ea$
$< 4.2 \times 10^{-10}$	$> 2.5 \times 10^8$	$< 1.3 \times 10^{-3}$	$\lesssim 10^{-7}$	Cosmology, $\Delta N_{\rm eff}$
$< 2.9 \times 10^{-10}$	$> 3.7 \times 10^8$	$< 5.7 \times 10^{-4}$	103 - 105	Rare muon decay
$\lesssim 2 \times 10^{-10}$	$\gtrsim 5 imes 10^8$	$\lesssim 3 \times 10^{-4}$	< 104	Rare muon decay
$< 2 \times 10^{-10}$	$> 6 \times 10^8$	$< 2 \times 10^{-4}$	98.1 - 103.5	Rare muon decay
$< 1 \times 10^{-10}$	$> 9 \times 10^8$	$< 1 \times 10^{-4}$	47.8 - 95.1	Rare muon decay (PIENU) ^a
$< 5.5 \times 10^{-11}$	$> 1.9 \times 10^9$	$< 2.1 \times 10^{-5}$	< 13	Rare muon decay (TWIST)
$\lesssim 4 \times 10^{-11}$	$\gtrsim 3 \times 10^9$	$\lesssim 9 imes 10^{-6}$	$\lesssim 50$	SN 1987A, $lf \rightarrow l'fa$
$< 1.9 \times 10^{-11}$	$> 5.5 \times 10^9$	$< 2.6 \times 10^{-6}$	$\lesssim 10$	Rare muon decay

 $2f_a/C_{ae\mu} = (m_e + m_\mu)/g_{ae\mu}$

Summary

NS cooling Direct URCA, modified URCA, thermal radiation, ...

Emission of LFV axions from NSs

- Fermi surface approximation
- Monte Carlo integration
- \succ Emission rate $\propto T^8$

Upper limits on LFV coupling

3×10⁻⁶ (modified URCA), very weak limits
 4×10⁻¹¹ (SN 1987A), competitive with the best lab limit

More directions in the future?

- Baryon number violation
- Modeling the cooling history of NSs
- Constraints within established SN 1987A models
- Dark matter axions