Gravitational waves from Nnaturalness

arXiv: 2310.xxxx [hep-ph] Mudit Rai Texas A&M University Collaborators : Brian Batell, Akshay Ghalsasi, Matthew Low

muditrai@tamu.edu

1

2

Motivation

- Naturalness : EFT should not be extremely sensitive to the structure of the underlying UV theory.
- 1-loop corrections from SM fields to the Hig corrections :

$$
m_H^2 \propto \Lambda_{\text{UV}}^2 \qquad \text{---}
$$

No evidence of new physics at TeV scale.

If new physics should enter at a new scale, then we need to explain this small hierarc

Nnaturalness(Arkani-Hamed et.al. 2016)

- ´ Nnaturalness is a model which consists of a large N copies of the Standard Model with varying values of the Higgs mass parameter.
- This allows the lightest of these sectors to have a weak scale parametrically lighter than the cutoff.
- ´ Our SM is to be identified with the sector having the smallest (negative) squared Higgs mass.
- Finally, a light `reheaton' can naturally transfer most of its energy to our sector and only slight fractional energy densities to the other sectors.
- E.g., for $N = 10⁴$, we will have quantum gravity becoming strong at $10¹⁶$ GeV, and something like SUSY enters at $\Lambda_H = 10 \text{ TeV}$ to cut off the Higgs sector.
- We investigate probing Nnaturalness through gravitational wave (GW) signatures.

Nnaturalness : Model

Consider N copies of SM, with the Higgs squared mass parameters assumed to vary uniformly from one sector to another, (i=0 corresponds to our SM)

$$
-\Lambda_{\text{UV}}^2 < m_{H,i}^2 < \Lambda_{\text{UV}}^2
$$
\n
$$
m_{H,i}^2 = -\frac{\Lambda_H^2}{N}(2i+r) = -(88 \text{ GeV})^2 (1+\frac{2i}{r})
$$

 \blacktriangleright We consider a scalar reheaton, which dominate the energy density of the universe at some time following inflation,

$$
{\cal L}_\phi \supset -a\phi \sum_i |H_i|^2 - \frac{1}{2} m_\phi^2 \phi^2
$$

arXiv:1607.06821 [hep-ph]

4

Nnaturalness

Reheaton decays

 \blacktriangleright For SM like sectors, reheaton decays to all kinematically available final states via it's mixing with the Higgs h_i

$$
\Gamma_{\phi\rightarrow\{f_i\}}=\theta_i^2\;\Gamma_{h_i\rightarrow\{f_i\}}(m_\phi)\quad\propto 1/m_{h_i\colon}^2\sim\frac{1}{n_i}
$$

• Pre-dominant decay is to our SM (lightest higgs) $\rho_i/\rho_{\rm SM} \approx \Gamma_i/\Gamma_{\rm SM} < 1$

In exotic sectors, no Higgs-scalar mass mixing in the absence of vev leads to decays via off shell exotic Higgs,

$$
\Gamma_i \sim \frac{1}{m_{H,i}^4} \sim \frac{1}{i^2}
$$

arXiv:1607.06821 [hep-ph]

 $7⁷$

First exotic sector (i=-1) : mass spectrum

Quark condensates form and lead to spontaneous breaking of the electroweak (SU2) symmetry at around $T_{-1, crit}$ ~85 MeV,

$$
\simeq 4\pi f_{\pi, -1}^3 \rightarrow v_{-1} \simeq \frac{f_{\pi}^3}{m_{H, -1}^2}
$$

3 goldstones of $SU(6)_L \times SU(6)_R \rightarrow SU(6)_V$ gets eaten by W and Z

 $m_{W,Z} \simeq f_{\pi,-1} \simeq \mathcal{O}(10 \text{MeV})$

The rest 32 gets their masses from the explicit symmetry breaking via Yukawas

$$
m_{\pi,-1} \simeq \mathcal{O}(\text{keV} - \text{MeV})
$$

Leptons are the lightest

 $m_e \simeq \mathcal{O}(10^{-4} \text{eV}), m_\mu \simeq \mathcal{O}(10^{-2} \text{eV}), m_\tau \simeq \mathcal{O}(10^{-1} \text{eV})$

■ Thus, near recombination(T~0.3 eV) the exotic sector relativistic species comprise photons, neutrinos, and electrons.

ΔN_{eff} in Nnaturalness

- Phenomenologically, Nnaturalness can only be probed via its effects on ΔN_{eff} during recombination.
- For our benchmarks, we use the experimental bound from CMB,

 $\Delta N_{\text{eff}}^{\text{CMB}} \leq 0.7$ (Planck + SH0ES)

SM like sectors have contributions via free streaming neutrinos

$$
\Delta N^{\rm CMB}_{\rm eff,i>0} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left[\frac{g^{\rm RH}_{*,\rm SM}}{2}\right] \left[\frac{g^{\rm CMB}_{*,\rm SM}}{g^{\rm RH}_{*,\rm SM}}\right]^{4/3} \sum_{i>0} \left[\frac{g^{\rm CMB}_{*,\rho,i}}{g^{\rm RH}_{*,\rho,i}}\right] \left[\frac{g^{\rm RH}_{*,s,i}}{g^{\rm CMB}_{*,s,i}}\right]^{4/3} \frac{\Gamma_i}{\Gamma_{\rm SM}}.
$$

Exotic sectors contribute via free streaming neutrinos and interacting radiation

$$
\Delta N^{\rm CMB}_{\rm eff,-1} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left[\frac{g^{\rm RH}_{\rm *\rho,SM}}{2}\right] \left[\frac{g^{\rm CMB}_{\rm *s,SM}}{g^{\rm RH}_{\rm *s,SM}}\right]^{4/3} \left[\frac{g^{\rm CMB}_{\rm *\rho,-1}}{g^{\rm RH}_{\rm *\rho,-1}}\right] \left[\frac{g^{\rm RH}_{\rm *s,-1}}{g^{\rm CMB}_{\rm *s,-1}}\right]^{4/3} D^{\rm 4/3}_{s,-1} \, \frac{\Gamma_{-1}}{\Gamma_{\rm SM}},
$$

Gravitational Wave signal

- Cosmological FOPT leads to production of stochastic GW via :
	- 1. Collisions of bubble walls
	- 2. Production of sound waves from plasma surrounding the bubbles
	- 3. Hydrodynamic turbulence in the plasma¹
- \blacktriangleright Differential GW density parameter characterizes them :

$$
\Omega_{GW} = \frac{1}{\rho_c} \frac{d\rho_{GW}}{d\log f}, \quad \rho_c = 3M_{pl}^2 H^2
$$

■ Semi-analytical parametrizations can be used to describe them,

$$
\Omega_{\rm GW}^{\rm em}(f_{\rm em}) = \sum_{I = {\rm BW, SW}} N_I \, \Delta_I(v_{\rm w}) \, \left(\frac{\kappa_I(\alpha_{-1}) \, \alpha_{\rm tot}}{1 + \alpha_{\rm tot}} \right)^{p_I} \left(\frac{H}{\beta} \right)^{q_I} s_I(f_{\rm em}/f_{\rm p,I})
$$

$$
h^2 \Omega_{\rm GW}^0(f) = h^2 \mathcal{R} \Omega_{\rm GW}^{\rm em} \left(\frac{a_0}{a_{\rm perc}} f \right).
$$

1. neglected in this study

11

100 Service of SM is fixed at 100 GeV

Cosmological Probes of NNaturalness

12

Two different scenarios

- **1.** Runaway phase transition : $v_w = 1, \alpha_{-1} = 5$
	- ´ bubble walls overcome friction from plasma, accerelating to become ultra-relativistic
	- \blacktriangleright Gravitational waves are sourced by bubble wall collisions
	- \bullet α_{-1} should be large to create sufficient pressure resulting in acceralating bubble
- **2. Non-runaway phase transition :** $v_w = \frac{1}{\sqrt{3}}$, $\alpha_{-1} = 0.3$, $\kappa_{BW} = 0$, $\kappa_{SW} = 0.55$
	- \blacktriangleright Bubble walls cannot overcome friction due to plasma, transition energy gets dumped into coherent plasma motion
	- \blacktriangleright Gravitational waves are sourced by sound waves
	- Assumed local thermal equilibrium, and α_{-1} is bounded and small.
- Rate of transition : $\beta/H \in [3, 10^4]$.
- Effective models for QCD (NJL, PNJL, LSM) predict $\alpha_{-1} \simeq 0.1, \frac{\beta}{H} \simeq 10^4$

14 GW detection

Mapping to Nnaturalness: Runaway

15

Mapping to Nnaturalness: non-runaway

16

Conclusion

- ´ Nnaturalness addresses the small hierarchy puzzle associated with the higgs mass via N copies of SM with a range of Higgs mass squared values.
- The Higgs first exotic sector undergoes a QCD FOPT, with the GW peaked in the $nHz - \mu Hz$ frequency.
- ´ Nnaturalness by itself cannot explain the recent observation of stochastic GW background observed recently by NANOGrav.
- ´ We find however that a large parameter of Nnaturalness parameter space can be probed by future PTA experiments as well as planned (LISA, BBO) and proposed $(\mu$ -Ares) space based gravitational wave observatories.

THANK YOU!

BACKUP Slides

Reheaton decays : Exotic Sectors

 \blacktriangleright 1-loop decays to SU(2) gauge bosons are given as,

 \boldsymbol{f}

$$
\Gamma_{\phi \to B_{-i}B_{-i}} = \frac{g'^4 a^2}{4096 \pi^5 m_\phi} |\tau A_0(\tau)|^2
$$

$$
\Gamma_{\phi \to W^a_{-i} W^a_{-i}} = \frac{3 g^4 a^2}{4096 \pi^5 m_\phi} |\tau A_0(\tau)|^2, \qquad \quad \tau = \frac{m_\phi^2}{4 m_{H_i}^2},
$$

where $A_0(\tau)$ is given by

$$
A_0(\tau) = \tau^{-2} (f(\tau) - \tau),
$$

$$
(\tau) = \begin{cases} \arcsin^2(\sqrt{\tau}) & \tau \le 1, \\ -\frac{1}{4} \left(\log \left(\frac{1 + \sqrt{1 - \tau^{-1}}}{1 - \sqrt{1 - \tau^{-1}}} \right) - i\pi \right)^2 & \tau > 1. \end{cases}
$$

Reheaton decays : Exotic Sectors

 \blacksquare For $m_{\phi} > 2 m_{H_{-i}}$, the decay to 2 exotic Higgs is given as

$$
\Gamma_{\phi\to H_{-i}H_{-i}^\dagger}=\frac{a^2}{8\pi m_\phi}\sqrt{1-\frac{4m_{H_{-i}}^2}{m_\phi^2}}.
$$

 \blacksquare For $m_{H_{-i}} < m_{\phi} < 2m_{H_{-i}}$ the three body decay happens with one off-shell Higgs. Leading state is the one with top quark, given as

$$
\Gamma_{\phi\to H_{-i}Q_{L,-i}\bar t_{R,-i}}=\frac{3y_t^2a^2}{128\pi^3m_\phi^3}\int_0^{(m_\phi-m_{H_{-i}})^2}ds\frac{s\lambda^{1/2}(m_\phi^2,m_{H_{-i}}^2,s)}{(s-m_{H_{-i}}^2)^2+(m_{H_{-i}}\Gamma_H)^2}
$$

The 4 body decay with both off shell Higgs is not relevant for our parameter space

Cosmology of exotic sector

22

• Neutrinos typically decouple while mu, tau are still relativistic.

 $T_{-1,\nu \text{ dec}}$ ~ 50 eV $-$ 200 eV

Following neutrino decoupling, the taus, and subsequently the muons, annihilate and heat the photon bath relative to the neutrinos by a factor

$$
\frac{T_{-1}^\nu}{T_{-1}} = \left(\frac{11}{25}\right)^{1/3} \quad \text{ for } \quad T_{-1} < m_{\mu_{-1}},
$$

Thus, near recombination the exotic sector relativistic species comprise photons, neutrinos, and electrons.

DoF during various epochs

FOPT : Parameters

- \blacktriangleright Tc critical temperature
- \blacksquare Tn nucleation temperature
- Tp percolation temperature

• strength of PT:
$$
\alpha_{-1} = \frac{\Delta V}{\rho_{\text{rad},-1}} \quad \alpha_{\text{tot}} = \frac{\Delta V}{\rho_{\text{rad},\text{tot}}}
$$

Rate of transition : $\frac{\beta}{H}$:

QCD with 3 or more massless quarks undergoes FOPT [Pisarski, Wilczek 1984]

25

The solid contours show the total ΔN_{eff} while the dashed contours show the contribution only from the exotic sectors. The blue shaded region shows where the decay $\phi \rightarrow H_{-1}H_{-1}$ is on-shell.

GW signal parametrisation

GW today is redshifted, and is related to that at emission as,

$$
h^2 \Omega_{\text{GW}}^0(f) = h^2 \mathcal{R} \Omega_{\text{GW}}^{\text{em}} \left(\frac{a_0}{a_{\text{perc}}} f \right).
$$

- \blacktriangleright The following parameters go into expression for Ω_{GW}^{em}
- Normalization factors and exponents :

 $(p_{BW}, p_{SW}) = (2, 2)$ $(q_{BW}, q_{SW}) = (2, 1)$ $(N_{\rm BW}, N_{\rm SW}) = (1, 0.159)$

 \rightarrow Potential suppression due to wall velocity :

$$
(\Delta_{\rm BW}, \Delta_{\rm SW}) = (\tfrac{0.11v_{\rm w}^3}{0.42+v_{\rm w}^3}, 1)
$$

Spectral shape function and peak frequencies :

$$
s_{\text{BW}}(x) = \frac{3.8 x^{2.8}}{1 + 2.8 x^{3.8}},
$$
 $s_{\text{SW}}(x) = x^3 \left(\frac{7}{4 + 3 x^2}\right)^{7/2},$
 $f_{\text{p,BW}} = 0.23 \beta,$ $f_{\text{p,SW}} = 0.53 \beta/v_{\text{w}}.$

Cosmological Constraints

- Pulsar Timing Array (PTA experiments observing correlations in variations in arrival times of radio signals from pulsars)
	- Nanograv : Recent data probing GW signals at O(1-10) nHz frequencies
	- SKA (Square kilometer Array) :
- Space based interferometers:
	- BBO (Big Bang Observatory)
	- **NuAres**
	- LISA (Laser Interferometer Space Antenna)