

Surfing Dark Matter Waves at the Windchime Experiment

TACOS 2023

Dorian Amaral¹

October 10th, 2023

¹Rice University

The Windchime Experiment

- Original idea: levarage advancements in quantum sensing techniques to gravitationally detect dark matter Daniel Carney et al. 1903.00492
- Windchime would see an array of accelerometers being employed in search for a passing dark matter particle
- Impulses along a track would be our dark matter signature!

Alaina Attanasio et al. 2203.07242

Surfing Dark Matter at Windchime

- Power of acceleration-sensing instruments already shown for ULDM Peter W. Graham et al. 1512.06165
 Daniel Carney et al. 1908.04797
 Jack Manley et al. 2007.04899
- Windchime will employ precisely such detectors!
- Leads to a natural question...

How can Windchime teach us about the nature of ultralight dark matter?

Ultralight Dark Matter: The Cosmic Ocean

• In ultralight regime, dark matter occuptation number is macroscopic

$$N = n_{\rm DM} \lambda_{
m dB}^3 \sim 10^{23} \left(\frac{10^{-5} \, {\rm eV}}{m_{
m DM}} \right)^4$$

- This allows us to treat **bosonic** dark matter as wavelike!
- Entire universe host to an 'ocean' of dark matter
- DM candidate can arise from new $U(1)_X$ gauge symmetry (fifth force)
- We consider a new particle coupling to X = B L charge

Acceleration Sensing with Magnetically Levitated Spheres

Joachim Hofer et al. 2211.06289

- Sensor concept: Superconducting particle trapped in a magnetic field
- Excellent mechanical sensor:
 - Can measure particle motion very precisely using quantum circuitry
 - Excellent isolation from background—mK temperatures, ultrahigh vacuum, vibration isolation

Potential of such sensors in ULDM search not yet tapped!

Submerging Windchime in Dark Matter

- Have two sensors constantly immersed in oscillating dark field
- If spheres made of different materials, get **differential acceleration**

Signal is a sharp peak in Fourier space at $\omega = m_{\rm DM}!$

Setting Limits

- 1. Assume we observe no signal—only noise (Asimov data set for asymptotic limit)
- 2. Characterise data via a likelihood (here a non-central χ^2)
- 3. Build test statistic based on this likelihood (here log-likelihood ratio)
- 4. Exclude coupling at 95% confidence level using this statistic

Quantity	Value
Resonance Frequency (f_0)	0.1 Hz, 1 Hz and 10 Hz
Damping Rate (γ)	$2\pi{ imes}10^{-8}{ extsf{Hz}}$
Bath temperature (\mathcal{T})	15 mK
Integration time ($\mathcal{T}_{\mathrm{int}}$)	2 weeks
Sensor mass (m_s)	1 g

Noises to Compete With

- Noise captured by noise power spectral density (PSD)
- Have three noise terms:
 - Thermal noise
 - Backaction noise
 - Imprecision noise

D. Amaral

- Ultralight dark matter is a well-motivated, wavelike DM candidate
- Magnetically levitated setups are powerful to probe such ULDM
- Ultralight dark matter sensitivity is an attractive near-term goal for Windchime

Windchime is set to be a versatile dark matter detector, tackling the dark matter puzzle from both mass extremes

Backgrounds

$$\begin{split} S_{aa}^{\rm Th} &\equiv \frac{4k_B T\gamma}{m_s} \\ S_{aa}^{\rm IN}(\omega) \sim \frac{\hbar}{m_s^3 \gamma \omega_0 |\chi_m(\omega)|^2} \\ S_{aa}^{\rm BA}(\omega) \sim \frac{\hbar \gamma}{m_s} \\ |\chi_m(\omega)|^{-2} &= (\omega^2 - \omega_0^2)^2 + \gamma^2 \omega^2 \end{split}$$

D. Amaral