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The Vast Dark Matter Landscape
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The Windchime Experiment

• Original idea: levarage advancements

in quantum sensing techniques to

gravitationally detect dark matter

Daniel Carney et al. 1903.00492

• Windchime would see an array of

accelerometers being employed in

search for a passing dark matter

particle

• Impulses along a track would be our

dark matter signature! Alaina Attanasio et al. 2203.07242
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https://arxiv.org/abs/1903.00492
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Surfing Dark Matter at Windchime

• Power of acceleration-sensing

instruments already shown for ULDM

Peter W. Graham et al. 1512.06165

Daniel Carney et al. 1908.04797

Jack Manley et al. 2007.04899

• Windchime will employ precisely such

detectors!

• Leads to a natural question...

D. Amaral 3

https://arxiv.org/abs/1512.06165
https://arxiv.org/abs/1908.04797
https://arxiv.org/abs/2007.04899


How can Windchime teach us about the nature of ultralight dark

matter?
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Ultralight Dark Matter: The Cosmic Ocean

• In ultralight regime, dark matter occuptation number is macroscopic

N = nDMλ3
dB ∼ 1023

(
10−5 eV

mDM

)4

• This allows us to treat bosonic dark matter as wavelike!

• Entire universe host to an ‘ocean’ of dark matter

• DM candidate can arise from new U(1)X gauge symmetry (fifth force)

• We consider a new particle coupling to X = B − L charge
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Acceleration Sensing with Magnetically Levitated Spheres

Joachim Hofer et al. 2211.06289

• Sensor concept: Superconducting

particle trapped in a magnetic field

• Excellent mechanical sensor:

• Can measure particle motion very

precisely using quantum circuitry

• Excellent isolation from

background—mK temperatures,

ultrahigh vacuum, vibration isolation

Potential of such sensors in ULDM

search not yet tapped!
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Submerging Windchime in Dark Matter

Mat. 1 Mat. 2
ULDM

a2 a1

• Have two sensors constantly immersed

in oscillating dark field

• If spheres made of different materials,

get differential acceleration

∆a ∼
√
2ρDM

mn
gB−L︸ ︷︷ ︸
Coupling

Differential q−m︷ ︸︸ ︷
∆B−L cos(mDM

↑
DM Mass

t)

Signal is a sharp peak in Fourier

space at ω = mDM!
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The Limit-Setting Game

Setting Limits

1. Assume we observe no signal—only noise (Asimov data set for asymptotic limit)

2. Characterise data via a likelihood (here a non-central χ2)

3. Build test statistic based on this likelihood (here log-likelihood ratio)

4. Exclude coupling at 95% confidence level using this statistic
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The MagLev Configuration

Quantity Value

Resonance Frequency (f0) 0.1Hz, 1Hz and 10Hz

Damping Rate (γ) 2π×10−8Hz

Bath temperature (T ) 15mK

Integration time (Tint) 2 weeks

Sensor mass (ms) 1 g
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Noises to Compete With

• Noise captured by noise power

spectral density (PSD)

• Have three noise terms:
• Thermal noise

• Backaction noise

• Imprecision noise
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MICROSCOPE
LIGO/Virgo

Eöt-Wash

f0 = 0.1 Hz

f0 = 1 Hz

f0 = 10 Hz
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Takeaways

• Ultralight dark matter is a well-motivated, wavelike DM candidate

• Magnetically levitated setups are powerful to probe such ULDM

• Ultralight dark matter sensitivity is an attractive near-term goal for Windchime

Windchime is set to be a versatile dark matter detector, tackling the dark

matter puzzle from both mass extremes
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Backgrounds

STh
aa ≡ 4kBTγ

ms

S IN
aa (ω) ∼

ℏ
m3

sγω0|χm(ω)|2

SBA
aa (ω) ∼ ℏγ

ms

|χm(ω)|−2 = (ω2 − ω2
0)

2 + γ2ω2
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