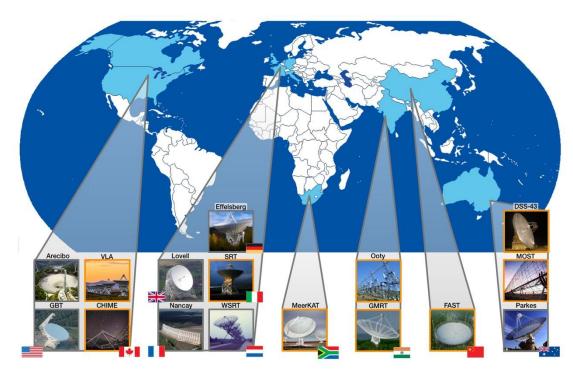
Harmonic Analysis Method to Search for Gravitational Waves with Pulsar Timing Arrays

Jonathan Nay

Theoretical Astroparticle and Cosmology Symposium in Texas October 10, 2023

Research Advisor: Kimberly Boddy (UT Austin) Collaborators: Chiara Mingarelli (Yale University, CCA) Tristan Smith (Swarthmore College)



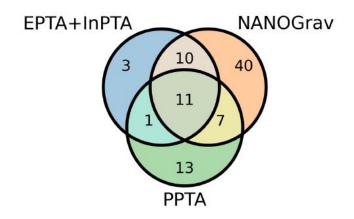
The University of Texas at Austin Department of Physics College of Natural Sciences

Outline

- Background and Terminology
 - Pulsar Timing Arrays (PTAs)
 - Gravitational Waves (GWs)
 - Stochastic GW Background (SGWB)
- June 2023 PTA Collaboration Results
- Harmonic Analysis Approach

PTA Collaborations

- North American Nanohertz Observatory for GWs (NANOGrav)
- Parkes PTA (PPTA)
- European PTA (EPTA)
- Indian PTA (InPTA)
- Chinese PTA (CPTA)
- MeerKAT Interferometer


International PTA (IPTA) combines data from PTA collaborations

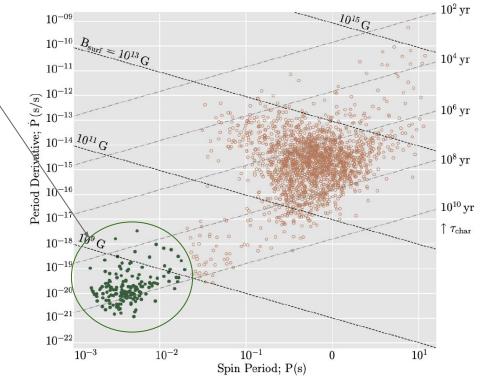

World's largest radio telescopes timing the Galaxy's best clocks!

Image created by NANOGrav collaboration

Millisecond Pulsars (MSPs)

- MSPs used for high-precision timing
 - Older pulsars with rotational stability
 - \circ Period accuracy as low as 10⁻¹⁴ s
- Distance from Earth to MSPs range from a few hundred pc to a few kpc
- Current number of MSPs being timed:

J. Verbiest and G. Shaifullah 2018

Figure 9 from G. Agazie et al. 9/1/2023

PTA Observable

• Pulse Time of Arrival (TOA)

- Integrated radio pulses over brief observing window (to amplify signal)
- Observing cadence for each pulsar on the order of days to months
- Thousands of TOAs recorded per pulsar

• Timing Residual

- Leftover TOA signal after subtracting pulsar's deterministic timing model:
 - Pulsar spin-down
 - Interstellar medium affects
 - Shapiro delay, etc.
- On the order of a fraction of a microsecond

 $\vec{n} + M\vec{\epsilon} +$ Post-fit Timing Red Processes Measurement White Unfit Deterministic Residual (Low Frequency) Noise **Timing Signal**

Image by T. Klein for NANOGrav

Pulsar Intrinsic Red Noise (unique to each pulsar; cannot predict *a priori*)

Nanohertz GWs

(common to all pulsars; theoretical prediction)

Bayesian Analysis of Timing Residuals

• White noise is gaussian:

L

ikelihood =
$$\frac{1}{\sqrt{2\pi \det(N)}} e^{-\frac{1}{2}\vec{n}^T N^{-1}\vec{n}}$$
 $\vec{n} = \vec{R}_{obs} - M\vec{\epsilon} - \vec{R}_{RP}$ $N := \langle \vec{n}\vec{n}^T \rangle$

• Analytically marginalize over $M\vec{\epsilon}$ and $\vec{R}_{\rm RP}$ to move unknown parameters into a combined covariance matrix C

Likelihood
$$\propto \frac{1}{\sqrt{2\pi \det(C)}} e^{-\frac{1}{2}\vec{R}_{obs}^T C^{-1}\vec{R}_{obs}} \qquad C = N + \tilde{C}_{RP}$$

• Red-process power spectra generally modelled as a power law

$$S_{h}(f) \propto A^{2} f^{-\gamma} \xrightarrow{\text{Wiener-Khinchin Theorem}} (C_{\text{RP}})_{ij} = \int_{f_{L}}^{f_{H}} S_{h}(f) \cos\left(2\pi f(t_{i} - t_{j})\right) df$$

$$A = \text{dimensionless amplitude}$$

$$\gamma = \text{spectral index}$$
Hyperparameters of the red-process covariance}
$$f_{H} \approx 1/\text{obs cadence (days)}$$

$$f_{L} \approx 1/\text{obs timespan (years)}$$

• Maximize likelihood to obtain best-fit red-process hyperparameters

GW Strain on Space-time

• Linearized theory, de Donder gauge, free-space

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$
 $\Box \bar{h}_{\mu\nu} = -16\pi T_{\mu\nu} = 0$

Transverse traceless gauge (2 polarizations) t = P/4 $h_{ij}^{\mathrm{TT}}(t,\vec{x}) = \sum_{A \to +++} \int_{-\infty}^{\infty} df \int_{S^2} d\hat{\Omega} \, \tilde{h}_A(f,\hat{\Omega}) \, \epsilon^A_{ij}(\hat{\Omega}) \, e^{-2\pi i f(t-\hat{\Omega}\cdot\vec{x})}$ × polarization **Polarization Tensor** t = PStochastic GW background (SGWB) ensemble average t = 3P/4t = P/2 $\left\langle \tilde{h}_A(f,\hat{\Omega})\tilde{h}_{A'}(f',\hat{\Omega}')\right\rangle = \frac{1}{8\pi}\delta^2(\hat{\Omega}-\hat{\Omega}')\,\delta(f-f')\,\delta_{AA'}\,\underline{S_h(f)}$ t = P/4Gaussian Figure 2 of N. Bishop **One-sided Power** Isotropic and L. Rezzolla (2016) Spectral Density (PSD) Stationary \succ Unpolarized

+ polarization

t = P

t = 3P/4

t = P/2

SGWB Effect on Timing Residual

 $\int df \frac{2}{3} \frac{\kappa_0}{(2)}$

SGWB-induced shift of single pulse from pulsar 'a' (Maggiore 2018)

$$z_{a}(t) := \frac{\Delta P_{a}}{P_{a}} = \sum_{A=+,\times} \int_{-\infty}^{\infty} df \int_{S^{2}} d\hat{\Omega} \, \tilde{h}_{A}(f,\hat{\Omega}) \, F_{a}^{A}(\hat{\Omega}) \, e^{-2\pi i f t} \left(1 - e^{-2\pi i f t_{a}(1+\hat{\Omega}\cdot\hat{p}_{a})}\right)$$

$$t_{a} = \text{pulse propagation time}$$

$$\hat{p}_{a} = \text{direction to pulsar } a$$

$$F_{a}^{A}(\hat{\Omega}) := \frac{1}{2} \frac{p_{a}^{i} p_{a}^{j} \epsilon_{ij}^{A}(\hat{\Omega})}{1 + \hat{\Omega} \cdot \hat{p}_{a}}$$
Antenna pattern function
Total shift of single TOA
$$R_{a}^{GW}(t,\Delta t) := \int_{t}^{t+\Delta t} \underbrace{z_{a}(t')dt'}_{\text{Integrated power spectrum}} Observation time window$$

$$Spatial correlation function \Gamma_{ab}$$

 $4\sin^2(\pi f\Delta t) \frac{3}{2}(1+\delta_{ab})$

Integrated power spectrum (common to all pulsars)

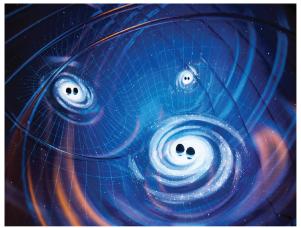
For an isotropic SGWB

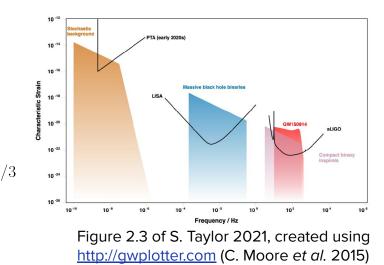
 $\langle R_a^{\rm GW}(t,\Delta t) R_b^{\rm GW}(t,\Delta t) \rangle \neq$

Spatial correlation function $\mathbf{1}_{ab}$ (specific to pulsar pairs)

 $\int_{S^2} \frac{d\hat{\Omega}}{4\pi} \sum_{A=+,\times} F_a^A(\hat{\Omega}) \ F_b^A(\hat{\Omega})$ Earth Pulsar Term Term

SGWB Astrophysical Sources




Image by O. Shmahalo for NANOGrav

- Characteristic Strain
 - SMBHBs (Phinney 2001)

$$h_c(f) := \sqrt{2fS_h(f)} = A_{\text{GWB}} \left(\frac{f}{f_{\text{yr}}}\right)^{\alpha} \quad \alpha = -2f$$

 $\circ~$ PTAs capable of detecting SGWB when $A_{\rm GWB}\gtrsim 10^{-16}~~{\rm (referenced to ~f_{yr} = 1/yr)}$

- Supermassive Blackhole Binaries (SMBHBs)
 - Center of *some* galaxies
 - 10⁵-10¹⁰ solar masses
 - Produce GWs during inspiral when <0.01 pc
 - GW frequencies in nHz range (for larger SMBHBs)
 - Inspiral time span on order of 25 million years
 - Could produce a SGWB if detectable

SGWB Spatial Correlations

• Timing-residual cross-power spectral density for SGWB (Arzoumanian et al. (2016)):

$$P_{ab}^{\text{GWB}}(f) := \mathbf{P}^{\text{GWB}}(f) \Gamma_{ab} = \begin{bmatrix} \frac{A_{\text{GWB}}^2}{12\pi^2} \left(\frac{f}{f_{\text{yr}}}\right)^{-\gamma} f_{\text{yr}}^{-3} \end{bmatrix} \Gamma_{ab} \qquad \qquad \gamma := 3 - 2\alpha \qquad \qquad \gamma = 13/3 \text{ for SMBHBs}$$

0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

0.0

-0.1 -

- Γ_{ab} is the spatial correlation function
 - Function of angle between pulsars a and b: $\hat{p}_a \cdot \hat{p}_b = \cos \Theta_{ab}$
 - Normalized to 1 when a=b
 - Referred to as an overlap reduction function (ORF)
 - For GWs, known as Hellings-Downs (HD) curve (R. Hellings and G. Downs 1983)
- Functional form of HD curve:

9

 $x_{ab} =$

$$\Gamma_{ab} = \left[\frac{1}{2} - \frac{1}{4}x_{ab} + \frac{3}{2}x_{ab}\ln(x_{ab})\right](1+\delta_{ab})$$

Pulsar Term (not included in figure)

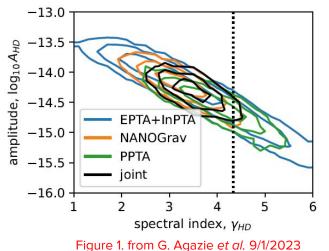
Figure adapted from W. Qin, K. Boddy, M. Kamionkowski, & L.Dai (2019)

angular separation Θ [deg]

100

150

50


HD Curve

PTA Evidence for SGWB (June 2023)

PTA Collaboration	No. of Pulsars	Max Obs. Time (yrs)	A _{GWB} (x10 ⁻¹⁵)*	HD Bayes Factor	False Alarm Probability	E
NANOGrav	68 - 1	~16	2.4 +0.7/-0.6	~200	10 ⁻³ to 5x10 ⁻⁵	
EPTA+InPTA	25	~11	2.0 +0.3/-0.2	~60	~10 ⁻³	
ΡΡΤΑ	32 - 2	~18	2.5 +0.7/-0.7	1.5	0.02	

Evidence of a SGWB!

* Reference frequency of 1/yr at γ =13/3; median posterior values with 90% CI (68% CI for PPTA)

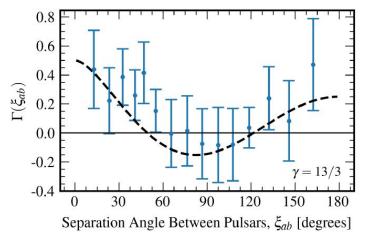


Figure 1.c. from G. Agazie et al. 2023 (NANOGrav 15-yr GWB paper)

Extending to Alternate Theories of Gravity

• Beyond-GR theories can have GWs with primarily quadrupolar spatial correlations *that* are different from HD correlations

But can a Bayes factor methodology or frequentist calculation that look like:

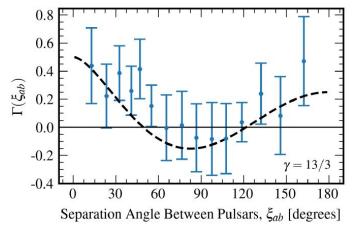
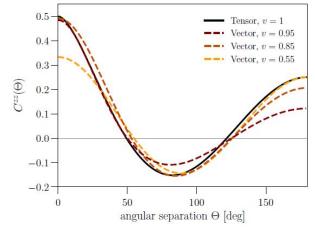
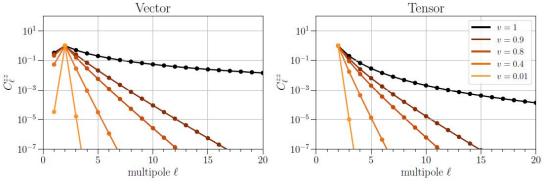



Figure 1.c. from G. Agazie *et al.* 2023 (NANOGrav 15-yr GWB paper)

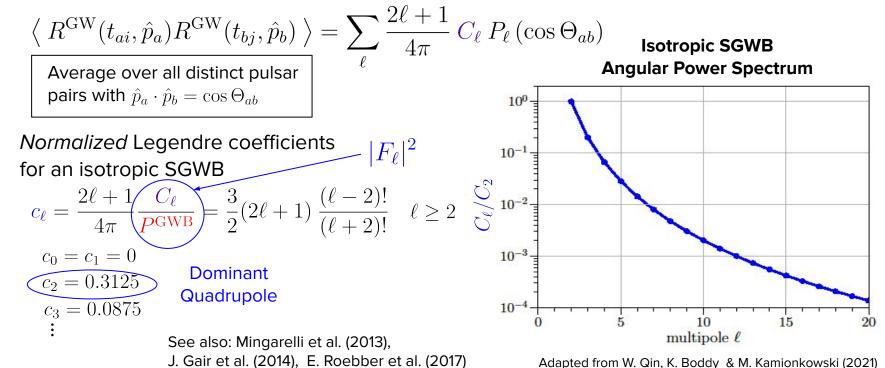
constrain spatial correlations from beyond-GR theories, e.g.:


Partial Figure 5 from W. Qin, K. Boddy, & M. Kamionkowski (2021)

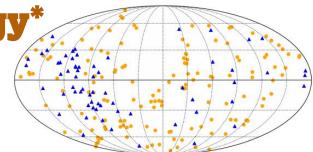
Harmonic Analysis Overview

- GW timing residual in spherical harmonic basis: $R_{\ell m}^{\rm GW}(t) = \int_{\mathcal{S}^2} d\hat{p} R^{\rm GW}(t, \hat{p}) Y_{\ell m}^*(\hat{p})$
- Isotropic, stationary background: $\langle R_{\ell m}^{\text{GW}}(t_{ai})R_{\ell'm'}^{\text{GW}*}(t_{bj})\rangle = C_{\ell}(|t_{ai} t_{bj}|) \,\delta_{\ell\ell'} \,\delta_{mm'}$ c_{∞} Detector Response Function
- Angular power spectrum: $C_{\ell}(|t_{ai} t_{bj}|) = 24\pi |F_{\ell}|^2 \int_{0}^{\infty} df P^{\text{GWB}}(f) \cos(2\pi f(t_{ai} t_{bj}))$
- Angular power spectrum characterizes spatial correlations of GWs and is unique to beyond-GR theories such as:
 - Alternate polarizations
 - Subluminal propagation speeds
 - Massive gravity

W. Qin, K. Boddy, M. Kamionkowski, & L. Dai (2018), D. Mihaylov et al. (2019), W. Qin, K. Boddy, & M. Kamionkowski (2021)


Quadrupole normalized to 1

Partial Figure 1 from W. Qin, K. Boddy, & M. Kamionkowski (2021)


Harmonic Analysis Overview

• Angular power spectrum from two-point angular correlation function

Harmonic Analysis Methodology*

- Generate mock PTA datasets with varying number of pulsars and observation times
 - Inject white noise, pulsar intrinsic red noise, and SGWB signal

Blue = Actual IPTA pulsars Yellow = Mock dataset pulsars

Create Bayesian analysis likelihood model

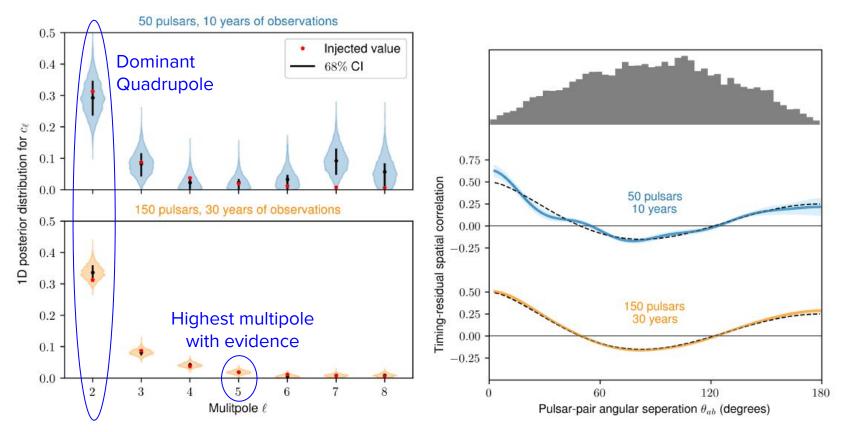
$$P_{ab}(f) = \frac{A_{\text{GWB}}^2}{12\pi^2} (f)^{-13/3} (1 + \delta_{ab}) \sum_{\ell=2}^8 c_\ell P_\ell(\cos \Theta_{ab}) + \frac{A_{\text{RN,a}}^2}{12\pi^2} (f)^{\gamma_{\text{RN,a}}} \delta_{ab}$$
Vello

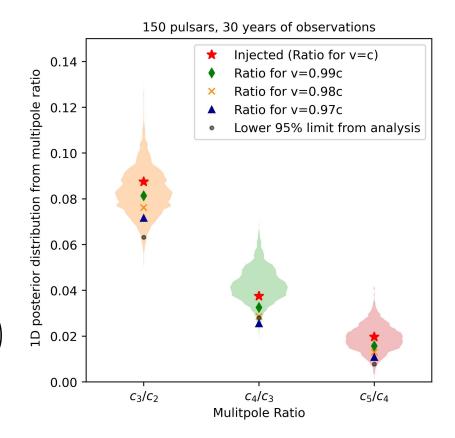
- Perform MCMC sampling with parameters ______
- Evaluate posterior distributions for multipole evidence
- Reconstruct spatial correlation function from best-fit posteriors

Parameter Name	No. of MCMC Parameters	MCMC Prior
log ₁₀ A _{GWB}	1	U(-18,-14)
c_2 through c_8	7	U(0,1)
log ₁₀ A _{RN,a}	No. of Pulsars	U(-20,-11)
$\gamma_{\rm RN,a}$	N0. of Pulsars	U(0,7)

* JN, K. Boddy, T. Smith, and C. Mingarelli, Harmonic Analysis for Pulsar Timing Arrays, 2023, ArXiv: 2306.06168

Harmonic Analysis Results




Figure 6 from JN, et al. (2023)

Harmonic Analysis Results

- Angular power spectrum can place constraints on beyond-GR theories
- Example:
 - Mock data with 150 pulsars, 30 years of observation, optimistic noise quality
 - $\circ~$ GW single-phase subluminal propagation speed v \leq c
 - Detector response function is a function of v (W. Qin, K. Boddy, & M. Kamionkowski (2021))

$$\frac{c_{\ell+1}}{c_{\ell}} = \frac{2\ell+3}{2\ell+1} \left(\frac{C_{\ell+1}}{C_{\ell}}\right) = \frac{2\ell+3}{2\ell+1} \left(\frac{|F_{\ell+1}(v)|^2}{|F_{\ell}(v)|^2}\right)$$

 \circ v > 0.98c at 95% confidence from multipole ratio c₄ / c₃ (most constraining)

Summary and Future Work

- PTA collaborations have found evidence for an isotropic SGWB
- Current PTA methodology does not answer questions such as
 - "How close is observed quadrupole correlation to its theoretical value?"
 - "Is the ratio of octupole to quadrupole correlations consistent with GR?"
- Harmonic analysis approach
 - Methodology provided in J. Nay, K. Boddy, T. Smith, and C. Mingarelli, Harmonic Analysis for Pulsar Timing Arrays, 2023, ArXiv: 2306.06168
 - Provides best-fit angular power spectrum of PTA timing data
 - Strength of multipoles quantified and/or bounded
 - Place constraints on beyond-GR theories
- Currently applying harmonic analysis methodology to NANOGrav 15-yr dataset (NANOGrav collaboration project)

GW Energy Density Spectrum

 10^{0} **SMBBHs** Planck GW energy density 10^{-6} GW energy density $(f)_{\mathrm{mag}}$ 10⁻⁸ spectrum $\Omega_{\rm GW}(f) := \frac{1}{\rho_c} \frac{d\rho_{\rm GW}}{d\log f}$ 10^{-10} - 10^{-12} $= \frac{2\pi^2}{3\mathrm{H}_0^2} f^3 S_h(f)$ 10^{-14} 10^{-8} 10^{-5} 10^{-2} 10^{-17} 10^{-11} 10^{-14} 10^{1} 10^{4} f/Hz

Figure 1 of A. Renzini et al. 2022

Generate Synthetic Timing Data

	Number of pulsars (N _{psrs})	50, 100, 150	
General Attributes	Pulsar spatial distribution	Full-sky uniform, Galactic-plane restricted	
	Pulsar observation time (T _{obs}) (14 day cadence)	10 years, 20 years, 30 years	
Injected	Instrument/Measurement Uncertainty White Noise	Moderate quality: &(100 ns) High quality: &(10 ns)	
Random Noise	Pulsar Intrinsic Red Noise (different for each pulsar)	$A_{RN} < A_{GW}$ 1 < $\gamma_{RN} < 5$	
Injected Signal	Isotropic Stochastic Gravitational Wave Background	$A_{GW} = 2 \times 10^{-15}$ $\gamma_{GW} = 13/3 = 4.333$	

Injected Signals

• Injected white noise covariance matrix

 $N_{ab} = (EFAC_a)^2 \left((TOAerr_a)^2 + (EQUAD_a)^2 \right) \delta_{ab}$

• Injected pulsar intrinsic red noise power-spectrum

 $S_{ab}^{\rm RN} \propto (A_{RN,a})^2 (f)^{-\gamma_{RN,a}} \delta_{ab}$

• Injected isotropic SGWB power spectrum

 $S_{ab}^{\rm GW} \propto (2 \times 10^{-15})^2 \ (f)^{-13/3} \Gamma_{ab}^{\rm HD}$

• Reminder: Wiener-Khinchin Theorem to convert red process power spectra into covariance matrices

Future Research

- Vary spatial correlations and frequency spectra
 Monopole and dipole signals for noise, new physics, etc.
- Explore use of different MCMC techniques for large parameter spaces
 - Recent developments in Hamiltonian MCMC for PTA analyses
- Develop techniques to separate auto-correlation amplitude from cross-correlation amplitude
 - Reduce correlation between GW amplitude and quadrupole coefficient
- Improve modeling of pulsar intrinsic red noise
 - Pulsar "drop-out" analyses shown to reduce bias in recovered GW amplitude

Research Overview

- **Research Goal:** Evaluate robustness of harmonic analysis for PTAs to determine *spatial correlation function*
- Bayesian statistics only
- Synthetic pulsars for control of input parameters
- Use PTA collaborations' analysis techniques and software pipeline
 - TEMPO2 (G. Hobbs, R. Edwards & R. Manchester 2006)
 - ENTERPRISE (J. Ellis, M. Vallisneri, S. Taylor & P. Baker 2020)
 - ENTERPRISE Extensions (S. Taylor, P. Baker, J. Hazboun, J. Simon & S. Vigeland 2021)
 - PTMCMCSampler (J. Ellis & R. van Haasteren 2017)

Method of Calculating Bayes Factors

• CURN likelihood function PSD (no cross-correlations between pulsars)

$$S_{ab}(f) = \frac{A_{\rm GWB}^2}{12\pi^2} \left(\frac{f}{f_{\rm yr}}\right)^{-\gamma} f_{\rm yr}^{-3} \,\delta_{ab}$$

• HD likelihood function PSD (pulsar cross-correlations given by HD curve)

$$S_{ab}(f) = \frac{A_{\rm GWB}^2}{12\pi^2} \left(\frac{f}{f_{\rm yr}}\right)^{-\gamma} f_{\rm yr}^{-3} \Gamma_{ab}^{\rm HD}$$

- Combine HD and CURN likelihood models into "product space" Bayesian analysis
- Add model switching parameter 'n' to MCMC parameters, uniform prior on [0,1]

n < 0.5 = sample CURN model subspace, n > 0.5 = sample HD model subspace

• Perform Bayesian analysis

Bayes Factor = (length of MCMC chain with n > 0.5) / (length of MCMC chain with n < 0.5)

Calculation of False Alarm Probability

- Randomly scramble pulsar sky positions
 - Use HD match statistic to create approximately orthogonal skies
 - Purpose is to determine probability that cross-correlations in timing data aren't a result of "lucky" positions
- Calculate HD_{scrambled} vs CURN Bayes factors for thousands of sky scrambles
- Create "background" distribution of Bayes factors from scrambled skies
- Compare actual HD vs CURN Bayes factor to background and calculate false alarm probability

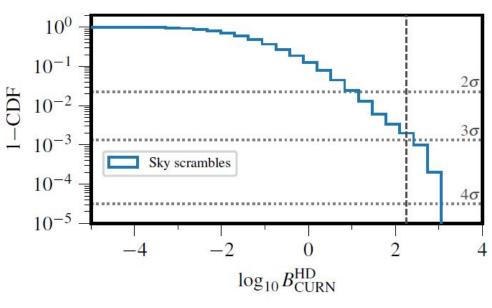


Figure 14 from G. Agazie *et al.* 2023 (NANOGrav 15-yr GWB paper)

Summary of PTA Collaborations Results

- NANOGrav, EPTA, and PPTA have consistent, decisive evidence for a low-frequency power-law spectrum common to all pulsars (BF 10^{12})
 - Amplitude and power law broadly consistent with (large) population of inspiraling SMBHBs
- NANOGrav and EPTA have evidence for spatial correlations in PTA timing data that are primarily quadrupolar! (as of June 2023)
 - PPTA does not yet have evidence for quadrupolar correlations
 - Some PTA collaborations also use *Frequentist* methods, which give results consistent with *Bayesian* methods
- No *known* systematics create quadrupolar correlations in PTA timing data
 - Clock errors cause monopolar correlations
 - Solar system barycenter errors cause dipolar correlations
- No physics within GR and the SM create quadrupolar correlations in PTA timing data, except gravitational waves!

June 29, 2023 PTA Collaboration Publications

Collaboration	Publication	ArXive
NANOGrav	The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background	
EPTA	The second data release from the EPTA III. Search for gravitational wave signals	
PPTA	Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array	2306.16215
СРТА	Searching for the nano-Hertz SGWB with the Chinese Pulsar Timing Array Data Release I	2306.16216
NANOGrav	The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars	2306.16217
NANOGrav	The NANOGrav 15 yr Data Set: Detector Characterization and Noise Budget	2306.16218
NANOGrav	The NANOGrav 15 yr Data Set: Search for Signals from New Physics	2306.16219
NANOGrav	The NANOGrav 15 yr Data Set: Constraints on SMBHBs from the Gravitational-wave Background	2306.16220
NANOGrav	The NANOGrav 15-year Data Set: Search for Anisotropy in the Gravitational-Wave Background	2306.16221
NANOGrav	The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual SMBHBs	2306.16222
NANOGrav	The NANOGrav 15-year Gravitational-Wave Background Analysis Pipeline	2306.16223
EPTA	+5 more publications	
PPTA	+2 more publications	