

PROBING HALOS VIA NUCLEON REMOVAL

Halo Week, Gothenburg, Sweden

June 10-14, 2024

Alexandre Obertelli, TU Darmstadt

HALOS AND SKINS: PRE-HISTORY

Burhop, NPB (1967)

Buggs et al., PRL (1973) followed up at LEAP, CERN, 90s Tanihata et al., PRL (1985)

HALOS & SKINS IN MEDIUM-MASS NUCLEI

Rotival, Duguet, PRC (2009)

OUTLINE

- Sensitivity of quasifree scattering observables to the size of Ca isotopes Enciu et al., PRL (2022); Enciu et al., work in progress (2024)
- PUMA: antimatter to probe the radial density tail

Aumann et al., EPJA (2022); Fischer et al., NIMB (2024); Schlaich et al., IJMS (2024)

NEUTRON-RICH CALCIUM ISOTOPES

CHARGE RADII OF CA ISOTOPES

Ca, stable and short lived Garcia Ruiz et al., Nat. Phys. (2016) Tanaka et al., PRL (2020) 0.6 Experiment (this work) Sa 0.5 Present (p,p) [22] Ab initio 3.6 0.5 $\alpha_{\rm D}$ [34] DFT (this work) CI 0.4 0.4 $\delta \langle r^2 \rangle^{48,52}$ (fm²) R_{ch} (fm) Δr_{np} (fm) 0.3 UNEDFO Exp. 0.3 3.5 0.2 0.2 0.1 0.1 0.0 0.0 3.4 1N10 50 200 SRGY 48.24 MEZ 2×14 NEDFOR3.0 0⁵ Sxcorr 52 54 40 42 50 ΔΔ 20 24 28 32 Mass number A N

- electron scattering not yet possible for most RI (see talk by Suda)
- · Isotopic shifts from laser spectroscopy give access to charge radii
- So far unexplained trend for neutron rich Ca and K isotopes
- Role of neutron distribution suggested to play a role Bonnard et al., PRL (2016)

NEUTRON STRUCTURE OF 52CA

erc

- **RIBF, RIKEN**
- ⁷⁰Zn primary beam at 345 MeV/nucleon, 200 pnA
- ⁵²Ca(p,pn)⁵¹Ca at 200 MeV / nucleon

NEUTRON-RICH CALCIUM ISOTOPES

N=32 SHELL CLOSURE IN ⁵²CA

- DWIA single-particle cross sections: K. Ogata, K. Yoshida
- ⁵²Ca presents the features of a neutron closed shell as ⁴⁸Ca, ⁵⁴Ca
- proton closed shell as well Sun et al., PLB (2020)

EXCLUSIVE MOMENTUM DISTRIBUTIONS

- Momentum distributions of $\nu p_{3/2}$ and $\nu f_{7/2}$ single particle states, K. Yoshida (JAEA) and K. Ogata (Kuyshu)
- DWIA transition amplitude:

$$T^{jlm} = \sqrt{S} \left\langle \chi_{p'}^{(-)} \chi_N^{(-)} \middle| \tau_{pN} \left| \chi_p^{(+)} \psi_{jlm} \right\rangle \right\}$$

Distorted wavefunctions of the outgoing (-) and incoming (+) protons and knocked-out nucleon and transition form factor $\langle \psi_f | a_{nlj} | \psi_i \rangle \sim$ s.-p. wavefunction of the knocked-out nucleon.

Model inputs

- W.-S. wavefunctions, parameters with S_n, r₀, a₀ OR microscopic transition amplitude
- Optical potential

TECHNISCHE

UNIVERSITÄT

DARMSTADT

NEUTRON TRANSITION AMPLITUDE RMS

• ⁵²Ca

Resulting rms radii: vf_{7/2}: 4.13(14) fm vp_{3/2}: 4.74(18) fm Difference: 0.61(23) fm

from HFB, SKM: **vf**_{7/2}: 4.12 fm **vp**_{3/2}: 4.49 fm Difference: 0.37 fm

- ^{53,54}**Ca**: compatible results
- The approach gives comparable size for $\nu p_{3/2}$ and $\nu p_{1/2}$

Assuming HF wavefunction and fixed proton orbitals up to $d_{5/2}$ (Si core), one gets:

 $\delta \langle r^2 \rangle^{48,52} = 0.76(63) \, \mathrm{fm}^2$

Inconclusive due to

- systematics
- stat. uncertainties

New experiments accepted at RIBF for O, C, Ca isotopes (Nakamura, Obertelli)

⁴⁰Ca and ⁴⁸Ca data from:

G. J. Kramer, "The proton spectral function of ⁴⁰Ca and ⁴⁸Ca studied with the (e,e'p) reaction", PhD, Amsterdam Univ., 1990

NEUTRON-RICH CALCIUM ISOTOPES

COMPARISON TO THEORY

[preliminary, removed from slides]

[1] HF calculations, HFBRAD code, SKM interaction

[2] W. Horiuchi, private communication based on: W. Horiuchi et al., Phys. Rev. C (2020)

[3] J. Liu, private communicationbased on: J. Liu et al., Phys. Lett. B (2020)[Relativistic Hartree-Fock calculations]

IMSRG: **preliminary**, ongoing work M. Heinz, T. Miyagi, A. Schwenk, A. Tichai

So far, unevolved one-body annihilation operator Extension to transformed (many-body) operator ongoing

PUMA AT CERN

LOW ENERGY ANTIPROTONS AS PROBE

- \bar{p} captured in antiprotonic orbital (~QED)
- then annihilate in tail $\rho_{n/p}(r)$ (QCD)
- Conservation of total charge

$$\sum_{\pi} q_{\pi} = \begin{cases} 0 \text{ for } \bar{p}p \\ -1 \text{ for } \bar{p}n \end{cases}$$

• Collaboration with Lazauskas, Hupin et al. (theory)

- First application of method: Bugg et al., PRL (1973)
- Application to rare isotopes first proposed by: Wada and Yamazaki, NIM B (2004)
- First experiments at PUMA, CERN, in 2025

PUMA AT CERN

THE ANTIMATTER FACTORY AT CERN

- 1.5 10¹³ protons at 26 GeV/c from PS
- 3. 10⁷ antiprotons at AD
- Deceleration: 5.3 MeV (AD), 100 keV (ELENA)
- Experiments: 4. 10⁶ antiprotons every 110 s

TECHNISCHE

UNIVERSITÄT

DARMSTADT

THE PUMA AT CERN

Objectives:

- store few 10⁷ antiprotons (stage 1), 10⁹ antiprotons (stage 2, \equiv 10⁷ antiprotons / cm³)
- Injection bunches of 10⁴⁻⁵ ions

Expected yields:

10⁵ ions and 10⁷ antiprotons in collision trap = 100 Hz of annihilations

Alexander von HUMBOLDT STIFTUNG

THE PUMA AT CERN

- Long antiproton trapping time already achieved. *Record:* BASE: > 50 years
- Transportation of antiprotons is also part of BASE-STEP (PI: C. Smorra)

PUMA AT CERN

FINAL STATE INTERACTIONS

M. Wada, Y. Yamazaki, NIMB (2004)

$M ackslash \Sigma_c$	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	
0	0	0	0	0	0	0	0	0	0	0	(11386)*
1	0	0	0	0	17223	0	11233	0	0	0	28456
2	0	0	0	7530	0	21437	0	2844	0	0	31811
3	0	0	1029	0	11901	0	6591	0	179	0	19700
4	0	44	0	1904	0	4394	0	519	0	5	6866
5	1	0	99	0	979	0	451	0	13	0	1543
6	0	2	0	75	0	133	0	14	0	0	224
7	0	0	1	0	7	0	3	0	0	0	11
8	0	0	0	1	0	1	0	0	0	0	2
9	0	0	0	0	1	0	0	0	0	0	1
	1	46	1129	9510	30111	25965	18278	3377	192	5	88612
* unobservable events											

- 4-parameter model for FSIs S. Wychech ω^+, ω^- : absorption of $\pi^+, \pi^-, \lambda^+, \lambda^-$: charge exchange π^+, π^-, π^0
- Neural network Kubota et al., in preparation (2024)
 Precision ~ 9%, Accuracy ~ 6 % benchmarked against INC simulations
- Room to improve performances

[preliminary, removed from slides]

COLLABORATIONS

Theory (Ca isotopes) TUDa: M. Heinz, T. Miyagi, A. Schwenk, A. Tichai, JAEA: K. Yoshida, Kyushu: K. Ogata

SUMMARY AND PERSPECTIVES

 Investigation of momentum distributions from quasifree-scattering as observable sensitive to the spatial distribution of nucleons

Enciu et al., PRL (2022) & work in progress (2024)

- Low-energy antiprotons to measure the **ratio of neutron-to-proton annihilations** PUMA collab., EPJA (2022); Kubota et al., in preparation (2024)
- Both observables require a reaction framework to extract nuclear structure theory
- Despite this limitation they may give access to information along isotopic chains not accesible otherwise

