Deformed Nuclei at extreme isospin

Thomas Papenbrock, tpapenbr@utk.edu University of Tennessee & Oak Ridge National Laboratory

Halo Week

Gothenburg, June 10, 2024 Work supported by the US Department of Energy

Today's menu

- Baishan Hu, Zhonghao Sun, G. Hagen, TP, Ab initio computations of strongly deformed nuclei around ⁸⁰Zr, arXiv:2405.05052
- Zhonghao Sun, A. Ekström, C. Forssén, G. Hagen, G. R. Jansen, TP, Multiscale physics of atomic nuclei from first principles, arXiv:2404.00058
- B. Acharya, B. S. Hu, S. Bacca, G. Hagen, P. Navrátil, TP, *The magnetic dipole transition in* ⁴⁸Ca, Phys. Rev. Lett. 132, 232504 (2024).

Multiscale problem:

The bulk of the binding energy is from short-range correlations Symmetry projection accounts for small details

- 1. Coester and Kümmel (1960), "Short-range correlations in nuclear wave functions"
- 2. Lipkin (1960), "Collective motion in many-particle systems: Part 1. the violation of conservation laws"

	E_{HF}	$E_{CCSD(T)}$	E _{Proj.}	$\langle J_{HF} \rangle$	$\langle J_{CCSD(T)} \rangle$
⁸ Be	-16.74	-50.24	-53.57	11.17	5.82
$^{20}\mathrm{Ne}$	-59.62	-161.95	-164.21	21.26	12.09
$^{34}\mathrm{Mg}$	-90.21	-264.34	-265.84	22.62	15.03

Data from Hagen et al., Phys. Rev. C 105, 064311 (2022)

Energy gain from symmetry projection is small and not size extensive

Our approach

Include short-range correlations first, then long-range ones

- 1. Start from an axially symmetric reference state
- 2. Include short-range ("dynamical") correlations via coupled cluster method
 - captures UV physics
- 3. Symmetry projection includes collective effects
 - captures IR physics

Meeting NCSM benchmarks

SA-NCSM: Launey, Dytrych, Sargsyan, Baker, Draayer, Eur. Phys. J. Special Topics 229, 2429 (2020).

NCSM: Caprio, Maris, Vary, Smith, Int. J. Mod. Phys. E 24, 1541002 (2015).

Shape coexistence

States with different shapes that are close in energy

Reviews: Heyde and Wood, Rev. Mod. Phys. 83, 1467 (2011); Gade and Liddick, J. Phys. G 43, 024001 (2016); Bonatsos, et al., Atoms 11, 117 (2023).

Observed in ³⁰Mg by Schwerdtfeger et al., Phys. Rev. Lett. 103, 012501 (2009) and in ³²Mg by Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010).

Theoretical descriptions: Reinhard et al., Phys. Rev. C 60, 014316 (1999); Rodríguez-Guzmán, Egido, and Robledo, Nucl. Phys. A 709, 201 (2002); Péru and Martini, Eur. Phys. J. A 50, 88 (2014); Caurier, Nowacki, and Poves, Phys. Rev. C 90, 014302 (2014); see also Tsunoda et al., Nature 587, 66 (2020).

Neutron-rich nuclei beyond $N \ge 20$ are deformed

 $R_{4/2} \equiv \frac{E_{4^+}}{E_{2^+}}$ $R_{4/2} = 10/3 \text{ for a rigid rotor}$

Simple picture: Spherical states (magic N = 20 number in the traditional shell model) coexist with deformed ground states

Poves & Retamosa (1987); Warburton, Becker, and Brown (1990); ...

Coupled cluster theory: collectivity of neon nuclei

Prediction: Shape coexistence in ³⁰Ne

Zhonghao Sun et al., arXiv:2404.00058

What drives nuclear deformation in chiral EFT?

Zhonghao Sun et al., arXiv:2404.00058

3.8

The region around ⁸⁰Zr

Baishan Hu, Zhonghao Sun et al., arXiv:2405.05052

Shapes of ⁸⁰Zr

Quadrupole constrained HF computations

- several minima identified
- angular momentum projected

Shape coexistence identified

 coupled-cluster computations too uncertain to predict shape of ground state

Used Miyagi (2023) for 3NFs in large model spaces

Fun fact: ⁸⁰Zr has higher energy than two ⁴⁰Ca nuclei

The region around ⁸⁰Zr

Baishan Hu, Zhonghao Sun et al., arXiv:2405.05052

Why do people care about M1 transitions?

Supernova 1987A

M1 spin excitations are dominated by isovector contributions.

The isovector-0 component of the Gamow-Teller operator translates to inelastic neutral-current neutrino-nucleus reactions at energies relevant for supernovae.

Our understanding of M1 impacts supernovae signals and dynamics.

Lüttge, von Neumann-Cosel, Neumeyer, Richter, Nucl Phys A (1996); Langanke, Martinez-Pinedo, von Neumann-Cosel, Richter, Phys Rev Lett (2004); Loens, Langanke, Martinez-Pinedo, Sieja, EPJA (2012); Tornow et al, Phys Letts B (2022).

Review on *M*1:

K. Heyde, P. von Neumann-Cosel, A. Richter, Rev. Mod. Phys. 82, 2365 (2010).

February 24, 1987 Las Campanas Observatory

The resonant 1⁺ HALO state in ⁴⁸Ca at 10.224 MeV

Scattering / reactions that probe the 1^+ state: (e, e'), (p, p'), (p, n), or (γ, n)

Simple picture of the 1⁺ state: neutron 1p-1h excitation; extreme single-particle model: $B(M1) = 12 \mu_N^2$

	S_{n}	ΔE	Г	1p-1h
	$({ m MeV})$	(MeV)	(keV)	
$\Delta NNLO_{GO}(394)$	9.74	-0.44	0	91%
$\Delta NNLO_{GO}(450)$	9.38	-1.26	0	91%
NNLO _{sat}	9.34	-0.23	0	91%
1.8/2.0(EM)	10.00	0.55	4	92%
Experiment	9.95	0.28	≤ 17	

Bijaya Acharya et al., Phys. Rev. Lett. 132, 232504 (2024)

The status

(e, e') scattering: (γ, n) scattering: (p, p') scattering: $B(M1) = 4.0 \pm 0.3 \,\mu_N^2$ $B(M1) = 6.8 \pm 0.5 \,\mu_N^2$ $B(M1) = 3.85(32) - 4.63(38) \,\mu_N^2$

Extreme s.p. model: $B(M1) = 12 \mu_N^2$

Theory has a hard time to reproduce a large amount of quenching

A. Harting, W. Weise, H. Toki, and A. Richter, Physics Letters B 104, 261 (1981).

J. B. McGrory and B. H. Wildenthal, Phys. Lett. B 103, 173 (1981).
Toru Suzuki, S. Krewald, and J. Speth, Phys. Lett. B 107, 9 (1981).
G. F. Bertsch, Nucl. Phys. A 354, 157 (1981).
M. Kohno and D. W. L. Sprung, Phys. Rev. C 26, 297 (1982).
K. Takayanagi, K. Shimizu, and A. Arima, Nucl. Phys. A 481, 313 (1988).
M. G. E. Brand, K. Allaart, and W. H. Dickhoff, Nucl. Phys. A 509, 1 (1990).
B. A. Brown and W. A. Richter, Phys. Rev. C 58, 2099 (1998).

J. D. Holt, J. Menendez, J. Simonis, and A. Schwenk, Phys. Rev. C 90, 024312 (2014). J. Wilhelmy, et al., Phys. Rev. C 98, 034315 (2018).

Meson-exchange currents claimed to explain small B(M1)All too high B(M1); $B(M1) = 7 - 8\mu_N^2$; $B(M1) > 5.1\mu_N^2$; Reproduce (e, e')B(M1) if quenched

[Steffen et al 1980; 1983]

[Tompkin et al 2011]

[Birkhan et al 2016]

Bijaya Acharya et al., Phys. Rev. Lett. 132, 232504 (2024)

Final result

Bijaya Acharya et al., Phys. Rev. Lett. 132, 232504 (2024)

Summary

Breaking and restoring symmetries

Exploits separation of scale between universal collective and specific UV physics

Conceptually simple & computationally affordable

- Shape coexistence in ³⁰Ne
- Connected deformation to microscopic forces
 - Much improved B(E2) values
 - ^{3x}Ne, ^{3x}Mg, ⁸⁰Zr
- B(M1) in ⁴⁸Ca larger than (e,e') but in agreement with (n,γ)
 - Two-body currents do not quench B(M1)

Thank you!

Confirmation: Shape coexistence in ³²Mg

Zhonghao Sun et al., arXiv:2404.00058

Why could/should there be quenching?

Results from (*e*, *e*') scattering match quenched shell-model results Von Neumann-Cosel, Poves, Retamosa, Richter, Phys Letts B (1998) Proposed: B(M1) is quenched similarly to B(GT) in pf shell nuclei

 \rightarrow Impacts (re)analyses of (p, p') experiments using the "unit cross section" method

Two-body currents do not quench M1 transitions in light nuclei

$J_i^\pi o J_f^\pi$	Method	IA	$\pi + \rho$	Μ	MEC		Total
			PS + V	MS	MD	Δ	
${}^{6}\text{Li}(0^{+};1) \rightarrow {}^{6}\text{Li}(1^{+};0)$	VMC	3.683(14)	0.307	0.003	0.010	-0.053	3.950(14)
${}^{6}\text{Li}(0^{+};1) \rightarrow {}^{6}\text{Li}(1^{+};0)$	GFMC	3.587(16)	0.323	0.002	0.012	-0.048	3.876(14)
$^{7}\text{Li}(\frac{1}{2}^{-}) \rightarrow ^{7}\text{Li}(\frac{3}{2}^{-})$	VMC	2.743(17)	0.396	0.006	-0.017	-0.034	3.162(22)
$^{7}\text{Li}(\frac{1}{2}^{-}) \rightarrow ^{7}\text{Li}(\frac{3}{2}^{-})$	GFMC	2.677(19)	0.395	0.011	-0.017	0.072	3.138(22)
$^{7}\text{Be}(\frac{1}{2}^{-}) \rightarrow ^{7}\text{Be}(\frac{3}{2}^{-})$	VMC	2.420(30)	0.390	-0.005	0.010	-0.024	2.791(36)
$^{7}\text{Be}(\frac{1}{2}^{-}) \rightarrow ^{7}\text{Be}(\frac{3}{2}^{-})$	GFMC	2.374(31)	0.394	-0.010	0.010	-0.002	2.766(36)
Marcucci, Muslema Pervin,	Pieper, Schiavilla,	,	\checkmark			$\overline{\mathbf{i}}$	1
Wiringa, Phys Rev C 78, 065501 (2008)		This is similar to			This is perhaps		
		v	vhat we will u	se		similar to wl	nat
						people used	l in
						the 1980s	5

Magnetic moments

Bijaya Acharya et al., Phys. Rev. Lett. 132, 232504 (2024)

Takayuki Miyagi et al., Phys. Rev. Lett. 132, 232503 (2024): multi-shell VS-IMSRG calculation accurate for ⁴¹Ca.²⁴

South of ⁷⁸Ni

Structure of ⁷⁸Ni

Ab initio comparable to mean field computations

Nucleus	Exp.	This work	Ref. [29]	Other
⁸⁰ Zr	$1010(180)^{a}$	1713^{+111}_{-183}	9393	3900^{b}
21	1910(100)	3044^{+143}_{-274}	2020	2540^{f}
⁷⁸ Zr	not known	2040^{+118}_{-220}	2504	
21		2927^{+155}_{-288}	2004	
78 Sr	$1840(100)^a$	2108^{+121}_{-211}	1080	2291^{f}
51		2519^{+125}_{-228}	1909	
⁷⁶ Sr	$2390(240)^a$	2444^{+145}_{-248}	2350	2175^{f}
72 _{Kr}	$810(150)^c$ $999(129)^e$	1012^{+36}_{-50}	810	763 ^d
IXI		1403_{-775}^{+84}	019	1097^{f}

[29] = Delaroche et al, PRC (2010)

b = Rodriguez & Egido, Phys Lett B (2011)

d = Bender, Bonche, Heenen, PRC (2006)

f = Kaneko, Shimizu, Mizusaki, Phys Lett B (2021)

Convergence of mean-field computations

Schunck, McDonnell, Sarich, Wild, Higdon, J Phys G (2015)

Convergence of mean-field computations

Marevic, Schunck, Ney, Navarro Pérez, Verriere, O'Neal, Comp. Phys. Comm. (2022)

Nilsson model reminder

Towards coupled cluster computations of Schiff moments in radium nuclei

Baishan Hu, Zhonghao Sun, G. Hagen, TP, ... work in progress