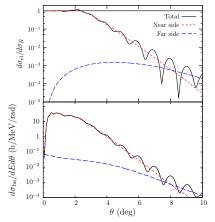
First experimental test of the ratio method

Pierre Capel - Shuya Ota



10 June 2024

How it all began...

With Mahir Hussein, study of angular distributions for scattering and breakup of halo nuclei

¹¹Be + Pb @ 69A MeV

Very similar features for scattering and breakup :

- oscillations at fwd angles
- Coulomb rainbow (~ 2°)
- oscillations at large angles (N/F interferences)

 \Rightarrow projectile scattered similarly whether bound or broken up

Then I showed this to Ron Johnson...

[PC, Hussein, Baye PLB 694, 448 (2010)]

Recoil Excitation and Breakup

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

• adiabatic approximation

•
$$U_{\mathrm{n}T} = 0$$

 \Rightarrow excitation and breakup due to recoil of the core

Elastic scattering : $\frac{d\sigma_{\rm el}}{d\Omega} = |F_{00}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\rm pt}$ with $F_{00} = \int |\Phi_0|^2 e^{i\mathbf{Q} \cdot \mathbf{r}} d\mathbf{r}$ $\mathbf{Q} \propto (\mathbf{K} - \mathbf{K}')$ \Rightarrow scattering of compound nucleus \equiv

form factor × scattering of pointlike nucleus

Similarly for breakup :
$$\frac{d\sigma_{bu}}{dEd\Omega} = |F_{E0}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{pt}$$

with $|F_{E0}|^2 = \sum_{ljm} \left| \int \Phi_{ljm}(E) \Phi_0 e^{i \mathbf{Q} \cdot \mathbf{r}} d\mathbf{r} \right|^2$

 \Rightarrow explains similarities in angular distributions

provides the idea for the ratio technique...

The Ratio Idea

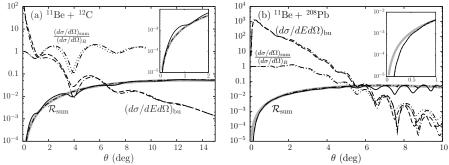
[PC, Johnson, Nunes PLB 705, 112 (2011)]

 $d\sigma_{\rm bu}/d\sigma_{\rm el} = |F_{E0}(\boldsymbol{Q})|^2/|F_{00}(\boldsymbol{Q})|^2$

- independent of reaction mechanism not affected by $U_{PT} \Rightarrow$ the same for all targets
- probes only projectile structure
- no need to normalise experimental cross sections

Alternatives :

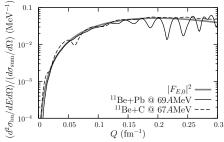
[PC, Johnson, Nunes PRC 88, 044602 (2013)]


$$\mathcal{R}_{\text{sum}} = \frac{d\sigma_{\text{bu}}}{d\sigma_{\text{sum}}} \frac{\text{REB}}{=} |F_{E0}|^2$$
with $\frac{d\sigma_{\text{sum}}}{d\Omega} = \frac{d\sigma_{\text{el}}}{d\Omega} + \frac{d\sigma_{\text{inel}}}{d\Omega} + \int \frac{d\sigma_{\text{bu}}}{dEd\Omega} dE$

$$\mathcal{R}_{\int \text{sum}} = \frac{\int d\sigma_{\text{bu}}}{d\sigma_{\text{sum}}} \frac{d\sigma_{\text{sum}}}{d\Omega} = 1 - |F_{00}|^2$$

Test this using Dynamical Eikonal Approximation,

- without adiabatic approximation
- including U_{nT}



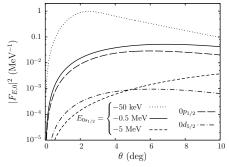
[PC, Johnson, Nunes PLB 705, 112 (2011), PRC 88, 044602 (2013)]

Dynamical calculations confirm the idea :

- Same pattern for scattering and breakup
- Ratio is smooth ⇒ removes sensitivity to reaction mechanism
- In excellent agreement with REB form factor |F_{E0}|²
- Small influence of
 - U_{nT} (shift of breakup)
 - Dynamics (on Pb at fwd angles)

DEA calculation of the ratio @ 70AMeV

[PC, Johnson, Nunes PLB 705, 112 (2011), PRC 88, 044602 (2013)]


Dynamical calculations confirm the idea :

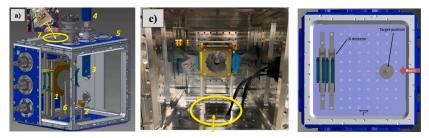
- Same pattern for scattering and breakup
- Ratio is smooth ⇒ removes sensitivity to reaction mechanism
- In excellent agreement with REB form factor $|F_{E0}|^2$
- Small influence of
 - ► *U_{nT}* (shift of breakup)
 - Dynamics (on Pb at fwd angles)
- Independent of the target

Sensitivity to the projectile structure

Because insensitive to U_{PT} and reaction dynamics very sensitive to projectile structure

Angular dependence and magnitude of form factor F_{E0} change with

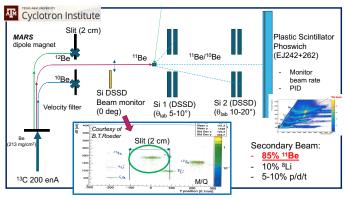
- neutron binding energy E_0
- orbital angular momentum ℓ
 [PC, Johnson, Nunes
 PLB 705, 112 (2011)
 PRC 88, 044602 (2013)]


Ratio idea extended to

- low beam energy (20AMeV) [Colomer et al. PRC 93, 054621 (2016)]
- proton halos [Yun, Colomer *et al.* JPG 46, 105111 (2019)]

Short review : [PC, Johnson, Nunes EPJA 56, 300 (2020)]

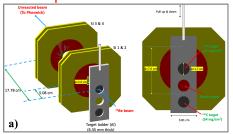
Blue-STEAI

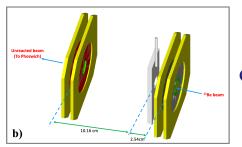

Blue aluminum chamber of Silicon TElescope Arrays for light nuclei

[S. Ota et al. NIM A 1059, 168946 (2024)]

- Scattering chamber to study direct reactions in inverse kin.
- 4 Si stripped detectors can be used as ΔE -E telescope arrays
- Different possible geometries to measure
 - forward $\theta \gtrsim 4^{\circ}$
 - up to large angles $\theta \lesssim 30^{\circ}$
- Can be used with RIB

Measurement @ TAMU : ¹¹Be + C @ 22AMeV




- Use K500 TAMU Cyclotron
- Primary beam of ¹³C @ 30AMeV on Be target
- Produces a secondary beam of ¹¹Be @ 22.5AMeV
- 10⁴ pps with 85% ¹¹Be
- Secondary target : C_{nat} (17 mg/cm²)

Setup

Configurations 1 & 2

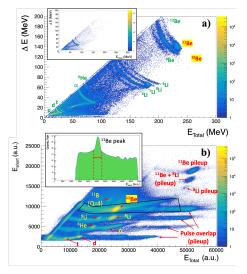
We used two configurations of the Si detectors used in pairs for ΔE -E PID

Config. 1 :

▶ 2 "near" @ 5 cm

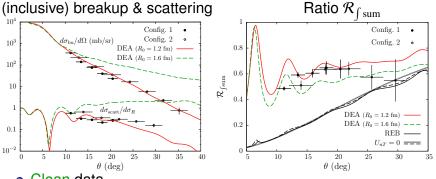
$$(\theta_{\rm lab} = 17^{\circ} - 31^{\circ})$$

 $(\theta_{\rm lab}=5^\circ\!\!-10^\circ)$


2 detectors at 10 cm

$$(\theta_{\rm lab} = 8^\circ - 18^\circ)$$

Experiment

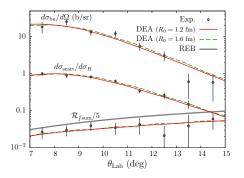

Setup

PID

- Very clear PID by Δ*E*-*E* in the Si telescopes
- Test with empty target (inset) confirms ¹¹Be and ¹⁰Be come from reaction with target
 - ¹¹Be : scattering (el. & inel.)
 - ¹⁰Be : 1-n removal (incl. bu)
- Clear PID in phoswich plastic scintillator placed 30 cm downstream to measure beam rate

¹¹Be + C @ 22AMeV (inclusive) breakup & scattering

Data


Clean data

- Well reproduced with DEA calculations with optical potentials from double folding of $\chi_{\rm EFT}$ $V_{\rm NN}$ of cutoff
 - $R_0 = 1.2$ fm excellent agreement with data
 - $R_0 = 1.6$ fm too soft \Rightarrow too large cross sections
- Ratio $\mathcal{R}_{\int sum}$ has smooth angular dependence
 - both cutoffs in agreement with data
 - Difference with REB due to U_{nT} (inclusive breakup)

¹¹Be + Pb @ 19AMeV

Similar data on Pb from Lanzhou

[Duan et al. PRC 105, 034602 (2022)]

- DEA calculations in excellent agreement with data
- Little influence of optical potentials (Coulomb dominated)
- Ratio
 - removes the angular dependence
 - reproduced by DEA
 - underestimates REB : dynamical effects

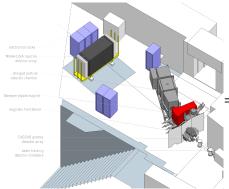
Summary and outlook

- The ratio method is new reaction observable to study halo nuclei, predicted to be
 - independent of reaction process (and optical potentials)
 - very sensitive to structure observables

[PC, Johnson, Nunes PLB 705, 112 (2011)]

Confirmed this with first measurement @ TAMU
 ¹¹Be+C @ 22AMeV

(and re-analysis of Lanzhou data ¹¹Be+Pb @ 19AMeV) but inclusive breakup \Rightarrow limitted accuracy


- We need to measure the ratio
 - with exclusive breakup (n in coincidence)
 - at higher beam energy

will enable a direct comparison to form factor $|F_{E0}|^2$

• Plan to do that @ FRIB for ¹⁹C...

Future

Future @ FRIB (MoNA) : breakup and scattering of ¹⁹C

- at larger beam energy viz. 100AMeV
- C and/or Pb targets
- use MoNA to detect n in coincidence

\Rightarrow kill two birds with one stone

- Test the full ratio method
- Study accurately ¹⁹C :
 - $\triangleright S_n$
 - ANC
 - Resonance structure

Thanks to our collaborators

Mahir Hussein[†]

Ron Johnson

Filomena Nunes

Victoria Durant

Experimental team

