Beta decay of halos…

K. Riisager

Aarhus University

Beta decay – some observations

- Clean mechanism for allowed decays
- Fermi strength concentrated (IAS)
- Gamow-Teller GR

 $ft = \frac{g}{B(F) + \left(\frac{g_A}{g_V}\right)^2 B(GT)}$ $\mathcal{F} = \ln 2 \frac{2\pi^3 \hbar (\hbar c)^6}{g_{\rm tr}^2 (m_e c^2)^5} = 6144(4) s$

Halo states – some properties

- Large spatial extension (beyond "nuclear core"), related to
	- Low separation energy (if g.s., close to driplines) and
	- Small extra-nuclear barriers (angular momentum / Coulomb)
- Clustered structure core + halo
- Factorization in ideal cases, giving:

 \mathcal{O}_{β} |halo state $\rangle = \mathcal{O}_{\beta}(\langle \text{core} \rangle | \text{halo} \rangle) = (\mathcal{O}_{\beta} | \text{core} \rangle) | \text{halo} \rangle + | \text{core} \rangle (\mathcal{O}_{\beta} | \text{halo} \rangle)$

… remember isospin !

• Strong isospin-isospin forces

D. Robson, Phys. Rev. 137 (1965) B535

• …leads naturally to isobaric analogue states (and anti-analogue states)

$$
|\text{halo}\rangle = |(t_2, t_3)t_h, t_c; T = t_h + t_c, T_z = -t_h - t_c\rangle =
$$

= $|t_c, t_c^z = -t_c\rangle |t_h, t_h^z = -t_h\rangle,$ (2)

$$
|IAS\rangle = |(t_2, t_3)t_h, t_c; T = t_h + t_c, T_z = -t_h - t_c + 1\rangle = |(t_2, t_3)t_h, t_c; T = t_h + t_c - 1, T_z = -t_h - t_c + 1\rangle =
$$
\n
$$
= \sqrt{\frac{t_h}{t_c + t_h}} |t_c, t_c^z = -t_c\rangle |t_h, t_h^z = -t_h + 1\rangle + \sqrt{\frac{t_c}{t_c + t_h}} |t_c, t_c^z = -t_c + 1\rangle |t_h, t_h^z = -t_h + 1\rangle - \sqrt{\frac{t_c}{t_c + t_h}} |t_c, t_c^z = -t_c + 1\rangle |t_h, t_h^z = -t_h + 1\rangle - \sqrt{\frac{t_h}{t_c + t_h}} |t_c, t_c^z = -t_c + 1\rangle |t_h, t_h^z = -t_h\rangle, \tag{4}
$$

E. Garrido et al., Phys. Rev. C107 (2023) 014003

Isospin purity ?

- NB! Isospin mixing distinct from "IAS non-overlap"
	- Coulomb mixing matrix elements at most around 100 keV…
	- Typically, small effects (10^{-4}) , in halos of order $10^{-3} 10^{-2}$

- Larger mixing expected:
	- In the low-lying continuum e.g. Robson (1965) or Mitchell et al, RMP 82 (2010) 2845
	- (Do for halos = just below continuum)
	- At intermediate distances e.g., Garrido et al, PL B 648 (2007) 274

Halo signals in beta decays ?

- Spatial extension changes overlap matrix element
	- W.r.t. to mirror systems: lower binding may change wavefct. structure…
- Imprints of the clustered structure
	- Low separation energies give new (beta-delayed) decay channels…

e.g. $Q_{\beta d} = 3.007 \text{ MeV-S}_{2n}$ B. Jonson, KR, NP A 693 (2001) 77

- Different decay dynamics decays directly to continuum…
- The obvious example: beta-delayed deuteron emission

Two beta-d cases: ⁶He and ¹¹Li

Phys. Rev. C 92 (2015) 014316

 \cdot 6 He:

- g.s. in ⁶Li has alpha-d structure
- significant cancellation for the continuum part

 \bullet ¹¹Li:

- clearly continuum spectrum
- theory difficult (but seems ok)

Here: beta strength extracted bin by bin NP A 925 (2014) 112

Intermezzo: dark decays

Fornal and Grinstein, PRL 120 (2018) 191801

- Idea inconsistencies in n decay due to small "n to X" branch?
- Free neutron or neutrons in n-halo nuclei

PR C97 (2018) 042501

• Recent impressive limits from ⁶He exp at GANIL

PHYSICAL REVIEW LETTERS 132, 132501 (2024)

Search for a Neutron Dark Decay in ⁶He

M. Le Joubioux \bullet ,^{1,*} H. Savajols \bullet ,^{1,†} W. Mittig,^{2,3} X. Fléchard \bullet ,⁴ L. Hayen \bullet ,^{4,5} Yu. E. Penionzhkevich,^{6,7} D. Ackermann,¹ C. Borcea,⁸ L. Caceres,¹ P. Delahaye,¹ F. Didierjean,⁹ S. Fran M. Lebois,¹⁰ X. Ledoux,¹ N. Lecesne,¹ E. Liénard,⁴ S. Lukyanov,⁶ O. Naviliat-Cuncic,^{2,3,4} J. Piot,¹ A. Singh,¹ V. Smirnov, ⁶ C. Stodel, ¹ D. Testov, ^{11,12} D. Thisse, ¹⁰ J. C. Thomas, ¹ and D. Verney¹⁰ ¹Grand Accélérateur National d'Ions Lourds (GANIL). CEA/DRF-CNRS/IN2P3.

What about beta-delayed p emission ?

- A halo decay case: $11Be$
	- Final state $p + {}^{10}Be$, focus here on its branching ratio
	- A series of attempts to detect $10B$ e gave upper limit 2.2 10^{-6} EPJ A (2020) 56:100
	- Positive identification of p in active target exp, 8.0 10⁻⁶
	- As yet unpublished upper limit 2 10⁻⁶ with optical TPC

N. Skolowska et al

PRL 123 (2019) 082501

- Too many calculations to list could have 1/2⁺ **and** 3/2⁺levels nearby
- New observations of a near-threshold level PRL 129 (2022) 012501; ibid 012502
- A "core decay" case: ⁸B
	- Expect a branching ratio of $2 \, 10^{-8}$, current limit $2.6 \, 10^{-5}$... J.Phys. G 40 (2013) 035109

Continuum decays for ⁸B and ¹²N ?

- ⁸B decay about 10% slower than ⁸Li decay
- ¹²N decay also slower than ¹²B decay:

• Evidence for decays to continuum ?

NP A 940 (2015) 119

Wilkinson and Alburger, PRL 26 (1971) 1127

Proton halos – beta asymmetry as probe

Eur. Phys. J. A (2023) 59:35

- First attempt, 17 Ne (to 1st excited state 17 F)
	- Exp: first forbidden, twice that of $17N -$ Theory: radial extension/occupations ??

N. Michel et al., NP A 703 (2002) 202

- Second case, ²⁶P (to several states in ²⁶Si)
	- Exp: varies (1st ex: 0.6 that of ²⁶Na) Theory: shell model may give this, systematics ?? D. Pérez-Loureiro et al., PR C 93 (2016) 064320
- Third case, ²²Al* (²²Si into 1st 1⁺ state)
	- Exp: 0.3 that of $22F -$ Shell-model: due to too little d-wave (more s-wave) configuration...

J. Lee et al., PRL 125 (2020) 192503

• Need more theory to obtain solid conclusions!

The puzzle of ¹⁴Be

• Why so simple ? Only core decay ?? H. Jeppesen et al.,

N.P. A 709 (2002) 119

More detailed look at ¹¹Li

- Clear halo state, complex decay, Q_β = 20.55 MeV
- Branches $(\%)$: 1n 86.3(9), 2n 4.1(4), 3n 1.9(2), α 1.7(3), d+t 10⁻²
- Most experiments go up to 8-10 MeV, but do not agree internally
- Shell model:

e.g. $p_{1/2}$ to $p_{3/2}$ feeding low-lying $1/2^{-}$

Three-body model with explicit isospin

Adjust core-n potentials to exp data

E. Garrido et al., Phys. Rev. C107 (2023) 014003

Not yet there: decay of hypernuclei

- Expect hypertriton to be Lambda loosely bound to deuteron…
- Many recent experiments (ALICE, STAR...)
	- Lifetime modified from free Lambda lifetime ?
	- Binding energy around 100-200 keV
	- Weak decay branching ratios few measurements…
- "Classic" halo observables ?
	- Electromagnetic response
	- Interaction radius

C.A. Bertulani, Phys.Lett. B 837 (2023) 137639

Conclusions

- Beta decays directly to continuum states occur for halos
	- Clearly for beta-d decays, potentially more general
	- Neutron halos: multi-particle continuum (difficult experiments)
- Decay patterns may reflect the halo structure
- Mirror asymmetry not yet quantitative indicator
- Wanted: Theory that handles continuum and isospin correctly

Thanks to:

MAGISOL

and the many students that have spent time in the group !

Theory colleagues (D.V. Fedorov, E. Garrido, A.S. Jensen…)

My Danish funders (NICE, DFF…)

Decay scheme for ¹¹Li

Low E: 1n $(+ \gamma)$ channel

C. M. MATTOON et al.

PHYSICAL REVIEW C 80, 034318 (2009)

FIG. 15. (Color online) β -delayed one-neutron emission decay scheme of ¹¹Li extracted from this experiment. Intensities given are relative to the intensity of the $2^+_1 \rightarrow 0^+_1$ transition (100). The color scheme refers to the colors used to identify the neutron branches in the figures presenting the line-shape analyses.

Y. Hirayama et al., Phys. Lett. B611 (2005) 239

The beta-2n and -3n branches

- $P_n = \sum i P_{in} = 100.3(1.4)$ %
	- $P_{1n} = 86.3(9) %$
	- $P_{2n} = 4.1(4)$ %
	- $P_{3n} = 1.9(2)$ %
	- 14% of n's from 2n/3n
	- Multiplicity 2: more 3n than 2n
- IS525, Delauny et al

arXiv:1906.04699 Il Nuovo Cimento 42 C (2019) 98

Fig. 1. – Time-of-flight spectra of ¹¹Li β -delayed neutrons detected in the near array. Top left: single neutron events. Top right: Multiplicity-2 events before cross-talk rejection. Bottom left: Multiplicity-2 events after cross-talk rejection. Bottom right: Time-of-flight of the second hit t_2 vs. time-of-flight of the first hit t_1 , after cross-talk rejection.

M. Madurga et al., Nucl. Phys. A810 (2008) 1

Table 3

Branching ratios for channels determined in this work following 11 Li β -decay. The total branching ratio to charged particle emitting channels obtained in [2] is $3.1(9)\%$, compared to the value of $1.73(2)\%$ in this work. The ¹¹Li activity was deduced from the branching of the β -(7 Li + α) decay channel of the daughter

^a Only the statistical error is consider in this column.

Including the normalization uncertainty.

Assuming a 2% feeding to the ground state in 11 Be, stated as upper limit in previous works [25].

