

Coulomb Dissociation of ¹⁷B Hyeji Lee

Tokyo Institute of Technology, Department of Physics, Nakamura Lab.

Haloweek24 2024 Jun 10–14 Göteborg, Chalmers University

¹⁷B: Two-Neutron Halo Nucleus

2

Neutron Orbital Configuration of ¹⁷B

Experimental data of orbital ratio of ¹⁷B

Reference	s-orbital ratio	Met
T. Suzuki (1999)	36(19)%	σ_I with F
T. Suzuki (2002)	69(20)%	σ_{-2n} with
Y. Yamaguchi (2004)	50(10)%	σ_R with F
Z. H. Yang (2021)	9(2)%	quasifre

Extremely Small s orbital 9(2)% !

- thod
- FB model
- FB model
- FB model
- ee (p,pn)

Electric Dipole (E1) Response of Halo Nucleus

Coulomb excitaion

between core and neutron(s)

between proton and neutron

19BSoft E1 Excitation of 2n Halo Nuclei: ¹¹Li,

T. Nakamura et al., Phys. Rev. Lett. 96, 252502 (2006).

K. J. Cook et al., Phys. Rev. Lett., 124, 212503 (2020)

Equivalent Photon Method

C. A. Bertulani, G. Baur, *Phys. Rep.*, 163, 299 (1988) T. Aumann, T. Nakamura, Phys. Scr., T152, 014012 (2012)

Virtual photon number $N_{E1}(E_{\gamma})$

Dineutron Correlation in Two-Neutron Halo

n-n correlation

 $\theta_{12} > 90^\circ$: cigar-like correlation

 $\theta_{12} < 90^\circ$: dineutron correlation

 $\theta_{12} = 90^\circ$: no correlation

dineutron correlation

K. Hagino and H. Sagawa, Phys. Rev. C. 72, 044321 (2005).

Dineutron Correlation in Two-Neutron Halo

K. Hagino and H. Sagawa, Phys. Rev. C. 76, 047302 (2007).

Non-energy-weighted cluster sum rule

$$\frac{B(E1)}{dE_{\chi}}dE_{\chi} = \frac{3}{\pi}\left(\frac{Ze}{A}\right)^{2} \langle r_{c-nn}^{2} \rangle$$

Matter radius of halo nuclei in three-body model

$$_{c} + \frac{2A_{c}}{A^{2}} \langle r_{c-nn}^{2} \rangle + \frac{1}{2A} \langle r_{nn}^{2} \rangle$$

Method

Coulomb Dissociation of ¹⁷B @ RIBF, RIKEN

Invariant Mass Method

$$M({}^{17}B^*) = \sqrt{[E({}^{15}B) + E(n_1) + E(n_2)]^2 - |\vec{p}({}^{15}B) + \vec{p}(n_1) + \vec{p}(n_2)|^2}$$

 $E_{rel} = M({}^{17}B^*) - m({}^{15}B) - 2m_n$
 $E_x = E_{rel} + S_{2n}$

10

Particle Identification and Inclusive Cross section

Inclusive Cross Section of ¹⁷B and ¹⁹B

	K. J. C	ook <i>et al.</i> (2020)			This work
	σ_{-2n} (mb)	σ_{-4n} (mb)		σ_{-2n} (mb)	σ_{-4n} (mb)
${}^{19}B + Pb$	1800 (60)	600 (30)	$^{17}\text{B} + \text{Pb}$	617 (21)	154 (11)
$^{19}B + C$	251 (5)	185 (3)	${}^{17}B + C$	159 (3)	63 (2)
σ_{Pb}/σ_{C}	7.1	3.3	σ_{Pb}/σ_{C}	3.9	2.5

Fragment PID from ¹⁷B beam

Coulomb Dissociation Cross Section

$d\sigma_{inel}(Pb)$	$-\Gamma \frac{d\sigma_{inel}(C)}{\Gamma}$
dE _{rel}	$-1 - dE_{rel}$

Integrated cross section

This	work	K. J. Cook <i>et al.</i> (2020)
¹⁷ B (Γ =	= 2.835)	¹⁹ B ($\Gamma = 2.8$)
6 MeV	$E_{rel} < 7 \text{ MeV}$	$E_{rel} < 6 \text{ MeV}$
(7) mb	327(8) mb	1160(30) mb
1) mb	23(1) mb	54(3) mb
(8) mb	261(8) mb	1009(31) mb

$^{17}\mathbf{B}$	¹⁹ B	
~ 2.5 MeV	~ 0.5 MeV	
242(8) mb	1009(31) mb	
Weak Halo		

Halo Feature of ¹⁷B

Isotope*	S_{2n} [MeV]	$\sigma_{CD_{-2n}}$ [mb]	$\sigma_{CD_15_{B+2n}}$ [mb]
$^{17}\mathrm{B}$	1.384 ± 0.205	168 ± 22	242 ± 8 ($\leq 6 \text{ MeV}$)
$^{19}\mathbf{B}$	0.089 ± 0.564	1097 ± 62	1009 ± 31 (< 6 MeV)
¹¹ Li	0.369 ± 0.001	_	2340 ± 50 ($\leq 3 \text{ MeV}$)

* The beam energy is 270 MeV/u, 220 MeV/u, 70 MeV/u for ¹⁷B, ¹⁹B and ¹¹Li

About ^{17}B ,

It definitely has halo features (small S_{2n} and large r_{rms}). But according to the significantly small CD cross section and high peak position, it might be better to consider as <u>a weak halo</u> or <u>4-neutron skin nucleus</u>.

$$E_{peak}$$
 at $\frac{d\sigma_{CD}}{dE_{rel}}$
~ 2.5 MeV
~ 0.5 MeV
~ 0.3 MeV

Summary

- ¹⁷B dissociation into ${}^{15}B + 2n$ in reactions with Pb and C at 270 MeV/u @ RIBF, RIKEN
- Extract inclusive cross section, relative energy spectrum and CD cross section Large peak position: $E_{peak}(^{17}B) \sim 2.5 \text{ MeV} (>> E_{peak}(^{19}B) \sim 0.5 \text{ MeV})$ Small Coulomb dissociation cross section: $\sigma_{CD}(^{17}\text{B}) \sim 1/4 \sigma_{CD}(^{19}\text{B})$ \rightarrow weak halo features

Future Plan

- Discussing Γ factor for subtracting nuclear dissociation.
- Extract $B(E1)/dE_{rel}$ spectrum and dineutron correlation.
- Theoretical three-body calculation will be great support on this research.

Collaborators

H. Lee^A, T. Nakamura^A, N. Nakatsuka^{BA}, Y. Kondo^A, Y. Satou^A, K. J. Cook^A, S. Ogoshi^A, A. T. Saito^A, N. L. Achouri^c, T. Aumann^{DE}, H. Baba^F, F. Delaunay^c, Q. Deshayes^c, P. Doornenbal^F, N. Fukuda^F, J. Gibelin^c, J. W. Hwang^G, N. Inabe^F, T. Isobe^F, D. Kameda^F, D. Kanno^A, S. Kim^G, N. Kobayashi^A, T. Kobayashi^H, T. Kubo^F, S. Leblond^C, J. Lee^F, F. M. Marques^C, R. Minakata^A, T. Motobayashi^F, K. Muto^H, T. Murakami^B, D. Murai^I, T. Nakashima^A, A. Navin^J, S. Nishi^A, N. A. Orr^C, H. Otsu^F, H. Sato^F, Y. Shimizu^F, H. Suzuki^F, K. Takahashi^H, H. Takeda^F, S. Takeuchi^{FA}, R. Tanaka^A, Y. Togano^{EI}, J. Tsubota^A, A. G. Tuff^K, M. Vandebrouck^L, and K. Yoneda^F

^A Tokyo Tech., ^B Kyoto Univ., ^C LPC Caen, ^D Institut fur Kernphysik. Tech. Univ. Darmstadt, ^E EMMI GSI, ^F RIKEN, ^G Seoul National Univ., ^H Tohoku Univ., ^I Rikkyo Univ., ^J GANIL, ^K Univ. of York, ^L Univ. Paris Sud

Thank you very much for your attention!

