Lattice calculations of nuclear clustering

Dean Lee Facility for Rare Isotope Beams Michigan State University Nuclear Lattice EFT Collaboration

HaloWeek'24 – nuclei at and beyond the driplines Chalmers University of Technology, Gothenburg June 9 – 14, 2024

<u>Outline</u>

Lattice effective field theory

Wavefunction matching

Pinhole algorithm

Relativistic heavy ion collisions

Asymptotic normalization coefficients

Isotopes of beryllium

Isotopes of carbon and oxygen

Summary and outlook

Lattice effective field theory

D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009) Lähde, Meißner, Nuclear Lattice Effective Field Theory (2019), Springer

Chiral effective field theory

Construct the effective potential order by order

$a = 1.315 \,\mathrm{fm}$

$a = 0.987 \,\mathrm{fm}$

Euclidean time projection

Auxiliary field method

We can write exponentials of the interaction using a Gaussian integral identity

$$\exp\left[-\frac{C}{2}(N^{\dagger}N)^{2}\right] \qquad \bigvee \qquad (N^{\dagger}N)^{2}$$
$$= \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} ds \exp\left[-\frac{1}{2}s^{2} + \sqrt{-C}s(N^{\dagger}N)\right] \qquad \searrow \qquad sN^{\dagger}N$$

We remove the interaction between nucleons and replace it with the interactions of each nucleon with a background field.

Wavefunction matching

Elhatisari, Bovermann, Ma, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, M. Kim, Y. Kim, Meißner, Rupak, Shen, Song, Stellin, Nature 630, 59 (2024)

Ground state wavefunctions

With wavefunction matching, we can now compute the eigenenergies starting from the eigenfunctions of H_B and using first-order perturbation theory.

$E_{A,n} = E'_{A,n}$ (MeV)	$\langle \psi_{B,n} H_A \psi_{B,n} \rangle$ (MeV)	$\langle \psi_{B,n} H'_A \psi_{B,n} angle$ (MeV)
-1.2186	3.0088	-1.1597
0.2196	0.3289	0.2212
0.8523	1.1275	0.8577
1.8610	2.2528	1.8719
3.2279	3.6991	3.2477
4.9454	5.4786	4.9798
7.0104	7.5996	7.0680
9.4208	10.0674	9.5137
12.1721	12.8799	12.3163
15.2669	16.0458	15.4840

Elhatisari, Bovermann, Ma, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, M. Kim, Y. Kim, Meißner, Rupak, Shen, Song, Stellin, Nature 630, 59 (2024)

Elhatisari, Bovermann, Ma, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, M. Kim, Y. Kim, Meißner, Rupak, Shen, Song, Stellin, Nature 630, 59 (2024)

Silicon isotopes

K. König et al., PRL 132, 162502 (2024)

Lattice calculations by Y. Ma

Pinhole algorithm

Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)

Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)

Summerfield, Lu, Plumberg, D.L., Noronha-Hostler, Timmins, Phys. Rev. C 104 L041901 (2021)

Giacalone et al., arXiv:2402.05995

For the 1% most central events, the elliptic flow of ${}^{20}Ne^{20}Ne$ collisions is enhanced by as much as 1.170(8)stat.(30)syst. for NLEFT and 1.139(6)stat.(39)syst. for PGCM relative to ${}^{16}O{}^{16}O$ collisions.

Giacalone et al., arXiv:2402.05995

Asymptotic normalization coefficients

 ${}^{12}C({}^{20}Ne, {}^{16}O){}^{16}O$

E. Harris et al., work in progress

Emergent geometry and duality of ¹²C

Shen, Elhatisari, Lähde, D.L., Lu, Meißner, Nature Commun. 14, 2777 (2023)

Shen, Elhatisari, Lähde, D.L., Lu, Meißner, Nature Commun. 14, 2777 (2023)

Shen, Elhatisari, Lähde, D.L., Lu, Meißner, Nature Commun. 14, 2777 (2023)

Isotopes of beryllium

S. Shen, et al., work in progress

Isotopes of beryllium

S. Shen, et al., work in progress

The left panel shows the intrinsic shape of the total nucleon density for ¹⁰Be. The right panel shows the density distribution of the two neutrons furthest away from the protons in ¹⁰Be.

Isotopes of carbon and oxygen

M. Kim, Song, Y. Kim, et al., work in progress

Isotopes of carbon

S. Shen, et al., work in progress

¹³C

density of the neutron furthest away from its closest proton

S. Shen, et al., work in progress

¹⁴C

density of the two neutrons furthest away from their closest protons

S. Shen, et al., work in progress

¹⁵C

density of the three neutrons furthest away from their closest protons

S. Shen, et al., work in progress

Summary and outlook

Nuclear lattice effective field theory is being used to perform *ab initio* calculations of nuclear structure. Wavefunction matching allows for calculations using high-fidelity chiral effective field theory interactions. The pinhole algorithm allows for detailed studies of nuclear structure correlations, clusters, sizes, and shapes. We are exploring the properties of the beryllium, carbon, and oxygen isotopes.