

Impact of ⁶Li properties on reactions of astrophysical interest and universal behavior

Chloë Hebborn

[PRL 129, 042503 (2022) & PRC 109, L061601 (2024)]

June, 11 2024

Need for accurate prediction of properties of exotic nuclei to refine our understanding of nucleosynthesis processes

[Hebborn et al. JPG 50 060501 (2023)]

This talk : Can we predict accurately $(\alpha$ -)reaction of astro. interest?

Unstable nuclei are studied through nuclear reactions \rightarrow Can we improve their analysis?

Are there universal features in nuclei?

CHICE HEDDOIN	Ch	оë	He	bł	201	rn
---------------	----	----	----	----	-----	----

Various α -induced reactions play a key role in astrophysics

slow s-process

Big bang nucleosynthesis

 $\alpha(d,\gamma)^{6}$ Li : ⁶Li abundance

Reactions at low energy are difficult to measure as the two charged nuclei repulse each other

ata : [Anders *et al.* (LUNA) PRL **113** 042501 (2014)] [Kiener *et al.* PRC **44** 2196 (1991)] [Mohr *et al.* **50** 1543 (1994)] [Robertson *et al.* PRL **47** 1867 (1981)]

\rightarrow Need theory to guide the extrapolation

Chloë Hebborn

Halo week 2024

Reactions involving light nuclei can be predicted using ab initio methods

1) Use an accurate model

2) χ -EFT interactions (cf Dean's talk)

3) Have an estimate of model & input uncertainties

For a complete *ab initio* description, we need both structure... and dynamical clustered description

No core shell-model with continuum

[Navrátil, Quaglioni, Hupin, Romero-Redondo and Calci, Phys. Scr. 91, 053002 (2016)]

Discrete structure information input

input (clustering/reactions)

Bound states. Ð

narrow resonances

 \rightarrow short-range

- Bound & scattering states, reactions
 - \rightarrow long-range

Ab initio predictions are accurate for α -d scattering

Convergence with $10 + \& 5 - \text{parity } {}^{6}\text{Li states}$, d g.s. + 8 d pseudostates (d breakup included)at $N_{max} = 11$ using NN+3N forces

HPC at LLNL

Ab initio predictions are accurate for ⁶Li spectrum but... not perfect

Convergence with 10 + & 5 - parity ⁶Li states, d g.s. + 8 d pseudostates (d breakup included) at $N_{max} = 11$

HPC at LLNL

Accurate prediction of ${}^{4}\text{He}(d,\gamma){}^{6}\text{Li}$

 \rightarrow need to have the right ⁶Li binding

Use of a phenomenological correction for the overbinding and the position of the 2^+ resonance

Ab initio prediction fills the experimental gap for $\alpha(d,\gamma)^{6}$ Li

Excellent agreement with data : importance of E_{1^+} at low energies and E_{2^+} at higher energies

What is the uncertainty due to the choice of χ -EFT force & to the finite size of the basis?

CL	- 2	ы.	L	L	
CII	ioe	пе	υ	bυ	m

Ab initio-informed predictions reduce the uncertainties on the $\alpha(d,\gamma)^6$ Li rate by an average factor 7

Comparison of two chiral forces and different N_{max} \rightarrow Small uncertainties thanks to the adjustment of the ⁶Li g.s. energy

[Hebborn, Hupin, Kravvaris, Quaglioni, Navrátil, Gysbers, Phys. Rev. Lett. 129, 042503 (2022)]

→ What about reactions involving heavier nuclei, e.g., ${}^{13}C(\alpha, n){}^{16}O \& {}^{12}C(\alpha, \gamma){}^{16}O ?$

Chloë Hebborn

Halo week 2024

For reactions involving heavier nuclei, one needs to make approximations

To make accurate reaction predictions :

1) Two-body model

2) $A - \alpha$ Interactions reproducing low-energy spectrum

3) Have an estimate of model & input uncertainties

 $A-\alpha$ interactions can be constrained using indirect reactions, e.g., (^6Li, d) transfer data

Halo week 2024

At $E \rightarrow 0$ MeV, non-resonant reactions are peripheral, they scale with the ANC² of subthreshold states

The cross section can be obtained in a two-body model

If one knows $C_{A-\alpha}^2$, one can determine accurately the rate at low E!

Chloë Hebborn

α -transfer (⁶Li, *d*) around the Coulomb barrier are also peripheral and can be used to extract ANCs

The cross section can be obtained in a three-body model

The ${}^{13}C(\alpha, n){}^{16}O$ S-factor has been measured underground and extrapolated to zero energies...

but new underground measurements predict a S(0) 21% smaller... and the discrepancy is traced back to $(C_{^{1/2+}_{^{13}C-\alpha}})^2$

[Gao et al. (JUNA collaboration) PRL 129, 132701 (2022)]

What can explain this discrepancy?

$$\sigma_{^{6}\mathrm{Li},d} \approx C_{\alpha-d}^{2} C_{A-\alpha}^{2} \hat{\sigma}_{^{6}\mathrm{Li},d}^{DWBA}$$

Using the ab initio $C_{\alpha-d}$ to reanalyze (⁶Li, *d*) data, we reconcile both LUNA and JUNA analyses!

Our $(C_{\alpha-d})^2$ explains the discrepancy between JUNA and LUNA S(0), is more precise, & favors the JUNA evaluation of S(0)!

Another key astrophysical reaction ${}^{12}C(\alpha, \gamma){}^{16}O$ have been constrained using (${}^{6}Li, d$) data and previous ANC !

 $C_{\alpha^{-12}C}$ extracted from (⁶Li, *d*) data used in R-matrix fits (large set of data : ANCs, S-factor, el. scattering, β -delayed α emission)

The ab initio $(C_{\alpha-d})^2$ leads to a reduction of 21% of the $(C_{\alpha-1^2C})^2$ & S-factor at stellar energies!

Data sets cannot constrained ANCs \rightarrow renormalization factors

Ab initio $C_{\alpha-d}$ carries very small uncertainties, why?

Few-body universality in the d- α system : the square root of the binding energy is correlated with the ANC²

Calculations with various λ_{SRG} , with various 3N forces & model spaces

 \rightarrow ANC is constrained with the binding energy... Is this universal behavior present in other non-halo nuclei? How can we explain this?

Few-body universality in the d- α system : the square root of the binding energy is correlated with the ANC²

Calculations with various λ_{SRG} , with various 3N forces & model spaces

 \rightarrow ANC is constrained with the binding energy... Is this universal behavior present in other non-halo nuclei? How can we explain this?

Can we explain this relationship with an analytic continuation of the effective range expansion?

Coulomb effective range expansion $(K_0^2 \text{ depends on } \cot \delta_0(k))$

$$K_0(k^2) = -\frac{1}{a_0} + \frac{r_0}{2}k^2 - P_0r_0^3k^4 + Q_0k^6 - R_0k^8 + S_0k^{10} + \mathcal{O}(k^{12})$$

- \rightarrow Needs to impose the position of the bound state (pole of the S-matrix)
- \rightarrow Convergence quite slow... up to k^{10}
- \rightarrow ANC calculated from these coefficients [Sparenberg, Baye, Capel, PRC 81, 011601(R) (2010)]

Universal features in ⁶Li cannot be explained by ERE ! So what can explain it ?

Can we explain the $C_0^2 - \sqrt{E_b}$ relationship from bound state wavefunction ?

Normalization of the overlap wave function $N = \int dr r^2 \phi_0(r)$

$$\leftrightarrow N = \int_0^{R_{cut}} dr \phi(r) + C_0^2 \int_{R_{cut}}^\infty dr W(r)$$

$$\leftrightarrow \left(N - \int_0^{R_{cut}} dr \phi(r)\right) \frac{1}{C_0^2 \int_{R_{cut}}^\infty dr W(r)} = 1$$

At which R_{cut} all wavefunctions look similar?

Universal behavior of the overlap function

Summary and prospects

Ab initio methods are accurate for light systems \rightarrow Start from a χ -EFT NN+3N Hamiltonian

& consistent treatment of structure & reaction

Ab initio prediction reduces the uncertainties on the $\alpha(d, \gamma)^6$ Li rate by ~7!

Use of ab initio input in the analysis of indirect measurements : \rightarrow Reconciliation of LUNA & JUNA S-factors for ${}^{13}C(\alpha, n){}^{16}O$

 \rightarrow $^{12}C(\alpha,\gamma)^{16}O$ S-factor at stellar energies reduced by 21% !

Small uncertainties due to universal behavior in ⁶Li :

Is it present in other nuclei? Up to which separation energies?

How can we understand this universality?

ੋ → 🌀

Thanks to my collaborators...

Gregory Potel

Melina Avila

% TRIUMF

Petr Navratil

Peter Gysbers

Guillaume Hupin

Daniel Phillips

Carl Brune

And you for your attention © !

Chloë Hebborn

Halo week 2024

June, 11 2024 24 / 24