Ab initio description of singly and doubly open-shell nuclei at polynomial cost

Pairing and deformation versus dynamical correlations + going heavier and more neutron rich

HaloWeek'24 - Nuclei at and beyond the driplines 9–14 juin 2024 Chalmers University of Technology

Thomas DUGUET DPhN, CEA-Saclay, France IKS, KU Leuven, Belgium

Collaborators on ab initio many-body methods/calculations

National Laboratory

H. Hergert

P. Navratil

A.Tichai P. Arthuis R. Roth

T. R. Rodriguez

J. M. Yao

Could have talked about halo...

I. Model-independent quantitative characterization method based on the matter density distribution

PHYSICAL REVIEW C 79, 054308 (2009)

New analysis method of the halo phenomenon in finite many-fermion systems: First applications to medium-mass atomic nuclei

V. Rotival^{1,2,*} and T. Duguet^{$2,3,4,\dagger$}

PHYSICAL REVIEW C 79, 054309 (2009)

Halo phenomenon in finite many-fermion systems: Atom-positron complexes and large-scale study of atomic nuclei

V. Rotival,^{1,2,*} K. Bennaceur,^{3,4,†} and T. Duguet^{2,4,5,‡}

II. Lightest halo (the deuteron...) can be described ab initio exactly at mean-field (« on steroid ») level

General Bogoliubov state
Breaking U(1)= np pairing
Breaking S(U2) = triax deformation
Breaking parity = Octupole
Break time reversal
+VAP on N=1 and Z=1
+PAV on N=1,Z=1,P=+,J=1

Quantity	Experiment	EM500	dVAP(pn)+PAV
J^{π}	1+	1^+	1+
E (MeV)	-2.2246	-2.2246	-2.222
Q_s (efm ²)	+0.286	+0.275*	[+0.25,+0.31]
μ (μ_N)	+0.857	?	[+0.860,+0.865]
<i>a</i> ₂ (fm)	5.419(7)	5.417	$5.49 (e_{max} = 10)$
<i>r</i> ₂ (fm)	1.753(8)	1.752	$1.71 (e_{\max} = 10)$

M. Drissi, T. Duguet, V. Somà, EPJA (2020)

Implications about many-body approx. on π -less EFT renormalizability

• Ab initio expansion many-body methods for closed- and open-shell nuclei

• How many-body correlations come in at polynomial cost = pedagogical account

• Pushing to high accuracy and to heavier open-shell nuclei at polynomial cost

• Ab initio expansion many-body methods for closed- and open-shell nuclei

• How many-body correlations come in at polynomial cost = pedagogical account

• Pushing to high accuracy and to heavier open-shell nuclei at polynomial cost

Ab initio approach at polynomial cost

"Ab initio" theoretical scheme

From point-like nucleons = In medias res
 Inter-nucleon interactions rooted into QCD = via effective field theory

Currently best realized by chiral effective field theory (χ EFT) in A-body sector

$$H|\Psi_k^{\sigma}\rangle = E_k^{\tilde{\sigma}}|\Psi_k^{\sigma}\rangle \text{ with } \sigma \equiv JM\Pi NZ \equiv \tilde{\sigma}M$$
$$[H, R(\theta)] = 0 \text{ with } G_H \equiv \{R(\theta), \theta \in \mathcal{D}_{G_H}\}$$

Expansion many-body methods

One-body Hilbert space
$$\mathcal{H}(1)$$

 $\dim \mathcal{H}(1) \equiv n_{\dim}$

A-body Hilbert space

$$\mathcal{H}_{A} = \mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(A)$$

$$\dim \mathcal{H}(A) \equiv n_{\dim}^{A}$$

« The curse of dimensionality »

$$H|\Psi_{k}^{\sigma}\rangle = E_{k}^{\tilde{\sigma}}|\Psi_{k}^{\sigma}\rangle \text{ with } \sigma \equiv JM\Pi NZ \equiv \tilde{\sigma}M$$
$$[H, R(\theta)] = 0 \text{ with } G_{H} \equiv \{R(\theta), \theta \in \mathcal{D}_{G_{H}}\}$$

One-body Hilbert space
$$\mathcal{H}(1)$$

 $\dim \mathcal{H}(1) \equiv n_{\dim}$

A-body Hilbert space

$$\mathcal{H}_{A} = \mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(A)$$

 $\dim \mathcal{H}(A) \equiv n_{\dim}^{A}$

Expansion many-body methods

Hamil	tonian partitioning	Unperturbed state				
Η	$=H_0+H_1$ -	$\stackrel{\text{« Easy »}}{\text{to solve}} \to H_0 \Theta_k^{(0)}\rangle$	= E	$E_k^{(0)} \Theta_k^{(0)}\rangle$ 90%	of the even-even nuclei	
		Doubly closed shell	S	ingly open shell	Doubly open shell	l
	H_0	$[H_0, R(\theta)] = 0$		$[H_0,e^{i\theta A}]\neq 0$	$[H_0, e^{i\vec{\theta}\cdot\vec{J}}] \neq 0$	
	$ \Theta_0^{(0)}\rangle$	sHF		sHFB	dHF(B)	
	Static	None		Superfluidity	Deformation	
	correlations				(superfluidity)	

Empirically key

Impossible to grasp otherwise at polynomial cost

$$H|\Psi_{k}^{\sigma}\rangle = E_{k}^{\tilde{\sigma}}|\Psi_{k}^{\sigma}\rangle \text{ with } \sigma \equiv JM\Pi NZ \equiv \tilde{\sigma}M$$

$$[H, R(\theta)] = 0 \text{ with } G_{H} \equiv \{R(\theta), \theta \in \mathcal{D}_{G_{H}}\}$$

$$(Dne-body Hilbert space \\ \mathcal{H}(1) \\ \dim \mathcal{H}(1) \equiv n_{\dim}$$

$$(H(1)) \equiv n_{\dim}$$

$$(H(1))$$

$$H|\Psi_{k}^{\sigma}\rangle = E_{k}^{\tilde{\sigma}}|\Psi_{k}^{\sigma}\rangle \text{ with } \sigma \equiv JM\Pi NZ \equiv \tilde{\sigma}M$$
$$[H, R(\theta)] = 0 \text{ with } G_{H} \equiv \{R(\theta), \theta \in \mathcal{D}_{G_{H}}\}$$

One-body Hilbert space
$$\mathcal{H}(1)$$

 $\dim \mathcal{H}(1) \equiv n_{\dim}$

A-body Hilbert space

$$\mathcal{H}_{A} = \mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(A)$$

$$\dim \mathcal{H}(A) \equiv n_{\dim}^{A}$$

Expansion many-body methods

Coefficients calculated at n_{dim}^p cost

$$H|\Psi_{k}^{\sigma}\rangle = E_{k}^{\tilde{\sigma}}|\Psi_{k}^{\sigma}\rangle \text{ with } \sigma \equiv JM\Pi NZ \equiv \tilde{\sigma}M$$
$$[H, R(\theta)] = 0 \text{ with } G_{H} \equiv \{R(\theta), \theta \in \mathcal{D}_{G_{H}}\}$$

One-body Hilbert space
$$\mathcal{H}(1)$$

dim $\mathcal{H}(1) \equiv n_{\text{dim}}$

A-body Hilbert space

$$\mathcal{H}_{A} = \mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(A)$$

 $\dim \mathcal{H}(A) \equiv n_{\dim}^{A}$

Expansion many-body methods

Hamiltonian partitioning	Unperturbed state	Fully correlated state
$H = H_0 + H_1 - \underbrace{\text{(sasy)}}_{\text{to solve}}$	$ \longrightarrow H_0 \Theta_k^{(0)}\rangle = E_k^{(0)} \Theta_k^{(0)}\rangle - (2)$	Expansion series $ \Psi_k^{\sigma}\rangle = \Omega_k \Theta_k^{(0)}\rangle$
Example: coupled cluster theories $\ \ \Omega$	$_0\equiv e^{\mathcal{T}}$ with cluster excitation operator $~~\mathcal{T}\equiv$	$\mathcal{T}_1 + \mathcal{T}_2 + \mathcal{T}_3 + \dots$
Closed-shell (unpaired) nuclei: standa	ard CC Open-shell (paired) nuclei: Bogoliubov CC extension
Hagen <i>et al.</i> , R	PP (2014)	Signoracci et al., PRC (2015)
$ \Theta_0^{(0)} angle = \prod_{i=1}^{n} a_i^{\dagger} 0 angle$ Slater determinant	$ \Theta_0^{(0)}\rangle = \prod \beta_k 0\rangle$	Bogoliubov vacuum
i=1 np-nh ex	citations operator	2n quasi-particle excitations operator
$\mathcal{T}_n \equiv \frac{1}{(n!)^2} \sum_{abij} \mathbf{t}_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} \dots a_a^{\dagger} \dots a_a^{\dagger$	$\mathcal{T}_n \equiv \frac{1}{(2n)!} \sum_{k_1 k_2 \dots k_n}$	$\mathbf{t}_{k_1k_2}^{2n0} \boldsymbol{\beta}_{k_1}^{\dagger} \boldsymbol{\beta}_{k_2}^{\dagger} \dots \boldsymbol{\beta}_{k_{2n}}^{\dagger}$
Unknowns found via coupled algebraic non-l	linear equations Unknowns found via co	oupled algebraic non-linear equations
\rightarrow Ex: CCSD = A ² n _{dim} ⁴ ; CCSDT = A ³ n _{dim} ⁵	\rightarrow Ex: BCCSD = n_{dim}^{6} ;	BCCSDT = n _{dim} ⁸

$$H|\Psi_{k}^{\sigma}\rangle = E_{k}^{\tilde{\sigma}}|\Psi_{k}^{\sigma}\rangle \text{ with } \sigma \equiv JM\Pi NZ \equiv \tilde{\sigma}M$$
$$[H, R(\theta)] = 0 \text{ with } G_{H} \equiv \{R(\theta), \theta \in \mathcal{D}_{G_{H}}\}$$

One-body Hilbert space
$$\mathcal{H}(1)$$

dim $\mathcal{H}(1) \equiv n_{\text{dim}}$

A-body Hilbert space

$$\mathcal{H}_{A} = \mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(A)$$

 $\dim \mathcal{H}(A) \equiv n_{\dim}^{A}$

Expansion many-body methods

Hamiltoni	an partitioni	ing Unp	erturbed state	Fully cor	related state
H = I	$H_0 + H_1$ -	$\begin{array}{c} \text{ (Easy)} \\ \text{ to solve } \end{array} \hspace{0.1cm} H_0 \Theta_{j} \\ \end{array}$	$\langle 0 \rangle_k = E_k^{(0)} \Theta_k^{(0)}\rangle$	Expansion $ \Psi_k^{\sigma}\rangle =$	$\Omega_k \Theta_k^{(0)} angle$
		Doubly closed shell	Singly open shell	Doubly open shell	
	H_0	$[H_0, R(\theta)] = 0$	$[H_0,e^{i\theta A}]\neq 0$	$[H_0, e^{i\vec{\theta}\cdot\vec{J}}] \neq 0$	
	$ \Theta_0^{(0)}\rangle$	sHF	sHFB	dHF(B)	
	Ω ₀	sMBPT sDSCGF sCC sIMSRG	sBMBPT sGSCGF sBCC	dBMBPT dDSCGF dCC	

► Numerical results shown in the below

Ground-state *ab initio* nuclear chart... then

Quasi-exact methods (>1990)

No core shell-model (NCSM) Examples: Green's function monte carlo (GFMC)

[Figure: B. Bally]

Ground-state *ab initio* nuclear chart... now!

• Ab initio expansion many-body methods for closed- and open-shell nuclei

• How many-body correlations come in at polynomial cost = pedagogical account

• Pushing to high accuracy and to heavier open-shell nuclei at polynomial cost

• Ab initio expansion many-body methods for closed- and open-shell nuclei

• How many-body correlations come in at polynomial cost = pedagogical account How does the ab initio spherical mean-field looks like along the Ca chain? How dynamical correlations improve the ab initio spherical mean-field? What happens to the ab initio mean-field when going to the Cr chain? Where is the pairing gone?

• Pushing to high accuracy and to heavier open-shell nuclei at polynomial cost

How does the spherical ab initio mean-field looks like?

Scalesi et al., arXiv:2406.03545

Superfluidity "fine-tuned" from a many-body standpoint = description at polynomial cost challenging*see back up slides

• Ab initio expansion many-body methods for closed- and open-shell nuclei

• How many-body correlations come in at polynomial cost = pedagogical account

How does the ab initio spherical mean-field looks like along the Ca chain? How dynamical correlations improve the ab initio spherical mean-field? What happens to the ab initio mean-field when going to the Cr chain? Where is the pairing gone?

• Pushing to high accuracy and to heavier open-shell nuclei at polynomial cost

2nd order effective valence-shell monopole 2-body matrix element due to 2p and 2h excitations

• Ab initio expansion many-body methods for closed- and open-shell nuclei

• How many-body correlations come in at polynomial cost = pedagogical account

How does the ab initio spherical mean-field looks like along the Ca chain? How dynamical correlations improve the ab initio spherical mean-field? What happens to the ab initio mean-field when going to the Cr chain? Where is the pairing gone?

• Pushing to high accuracy and to heavier open-shell nuclei at polynomial cost

Scalesi et al., unpublished

Very recent design of *non-perturbative* dDSCGF[2] expansion method

- \rightarrow +4.2 MeV binding on average compared to dBMBPT(2)
- \rightarrow Very consistent with dCCSDT-1 but slight trend with neutron excess
- \rightarrow Access to odd nuclei on the same footing

Allowing for deformation is the key feature to describe doubly open-shell nuclei at polynomial cost

• Ab initio expansion many-body methods for closed- and open-shell nuclei

• How many-body correlations come in at polynomial cost = pedagogical account

How does the ab initio spherical mean-field looks like along the Ca chain? How dynamical correlations improve the ab initio spherical mean-field? What happens to the ab initio mean-field when going to the Cr chain? Where is the pairing gone?

• Pushing to high accuracy and to heavier open-shell nuclei at polynomial cost

Where is the pairing gone?^{© G. Hagen, T. Duguet}

Where is the pairing gone?^{© G. Hagen, T. Duguet}

Where is the pairing gone?^{© G. Hagen, T. Duguet}

Frosini et al., EPJA (2022)

Superfluidity "fine-tuned" from a many-body standpoint

► A quantitative ab initio description at polynomial cost is a challenge for the future

• Ab initio expansion many-body methods for closed- and open-shell nuclei

• How many-body correlations come in at polynomial cost = pedagogical account

O Pushing to high accuracy and to heavier open-shell nuclei at polynomial cost BCCSD and BCCSD[T] ground-state energies in Ca and Sn isotopes BCCSD ground-state charge radii and neutron skins in Sn isotopes

Pushing to greater accuracy in open-shell nuclei...

Pushing to greater accuracy in open-shell nuclei...

...before pushing to heavier open-shell nuclei

Tichai et al., PLB (2024)

Heaviest open-shell ab initio calculation

 $\begin{array}{l} \text{sBCCSD calculations of }^{\text{A}}\text{Sn isotopes} \\ \text{Polynomial scaling makes possible to go beyond }^{132}\text{Sn} \\ \sigma_{\text{th-exp}} (E) = 15.4 \text{ MeV} \sim 1.5\% \\ \text{Exaggerated N=82 magicity} \\ \rightarrow \text{Significant lack of binding in }^{132\text{-}138}\text{Sn} \\ \rightarrow \text{Outside many-body uncertainty estimate} \\ \rightarrow \text{Attributable to interaction uncertainty} \end{array}$

...before pushing to heavier open-shell nuclei

Vernik et al., unpublished

Heaviest open-shell ab initio calculation

... before pushing to heavier open-shell nuclei

- \rightarrow Possibly equally affected by interaction uncertainty
- \rightarrow Not affected by (perturbative) [T] at e_{max}=8

• Ab initio expansion many-body methods for closed- and open-shell nuclei

• How many-body correlations come in at polynomial cost = pedagogical account

Pushing to high accuracy and to heavier open-shell nuclei at polynomial cost BCCSD and BCCSD[T] ground-state energies in Ca and Sn isotopes BCCSD ground-state charge radii and neutron skins in Sn isotopes

...and beyond energies: charge radii in Sn

Demol et al., unpublished

Absolute radii from sBCCSD
Recent/unpublished new data in ¹³⁴ Sn/ ¹⁰⁴⁻¹⁰⁶ Sn
Results depend strongly on χ EFT-based interaction
\rightarrow EM 1.8/2.0 radii too small by 5%
MINIL OCo underectimates by 1%

- $\rightarrow \Delta NNLOGo$ underestimates by 1%
- \rightarrow Variants to be tested
- Arthuis *et al. ,* arXiv:2401.06675

...and beyond energies: charge radii in Sn

Demol et al., unpublished

Going below ¹⁰⁴Sn and beyond ¹³⁴Sn → Possible at CRIS@ISOLDE in future with MR-TOF

...and beyond energies: charge radii in Sn

Demol et al., unpublished

...and beyond energies: neutron skin in Sn

Demol et al., unpublished

► Ask me if not clear