The beryllium isotopic chain: evolution of structure in neutron rich nuclei

Anna E. McCoy

HaloWeek'24 Gothenburg,Sweden June 13, 2024

No-core shell model

Solve many-body Schrodinger equation

$$\sum_{i}^{A} - \frac{\hbar^2}{2m_i} \nabla_i^2 \Psi + \frac{1}{2} \sum_{i,j=1}^{A} V(|r_i - r_j|) \Psi = E \Psi$$

Expanding wavefunctions in a basis

$$\Psi = \sum_{k=1}^{\infty} a_k \phi_k$$

Reduces to matrix eigenproblem

$$\begin{pmatrix} H_{11} & H_{12} & \dots \\ H_{21} & H_{22} & \dots \\ \vdots & \vdots & \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix} = E \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix}$$

Harmonic oscillator basis

- Basis states are configurations, i.e., distributions of particles over harmonic oscillator shells (*nlj substates*)
- States are organized by total number of oscillator quanta above the lowest Pauli allowed number N_{ex}
- States with higher N_{ex} contribute less to the wavefunction
- Basis must be truncated: Restrict $N_{\text{ex}} \le N_{\text{max}}$

Want results that are approximately independent of $N_{\rm max}$

Binding energies

Beryllium isotopes

- Beryllium isotopes have well known 2α cluster structure *See Dean Lee's talk*
- Appearance of halo nuclei: ¹¹Be, ¹⁴Be, others?
- Highly deformed states

Radii

Quadrupole deformation

D. J. Rowe. Rep. Prog. Phys. 48(1985) 1419.

Beryllium isotopes

- Beryllium isotopes have well known 2α cluster structure *See Dean Lee's talk*
- Appearance of halo nuclei: ¹¹Be, ¹⁴Be, others?
- Highly deformed states
- Exhibit rotational dynamics

(a) σ -orbit

Nuclear rotations

Characterized by rotation of intrinsic state $|\phi_K\rangle$ by Euler angles ϑ (J = K, K + 1, ...)

$$|\psi_{JKM}\rangle \propto \int d\vartheta \Big[\mathscr{D}^{J}_{MK}(\vartheta) |\phi_{K};\vartheta\rangle + (-)^{J+K} \mathscr{D}^{J}_{M-K}(\vartheta) |\phi_{\bar{K}};\vartheta\rangle \Big]$$

Rotational energy: $E(J) = E_0 + A[J(J+1)]$

Nuclear rotations

Characterized by rotation of intrinsic state $|\phi_K\rangle$ by Euler angles ϑ (J = K, K + 1, ...)

$$|\psi_{JKM}\rangle \propto \int d\vartheta \Big[\mathscr{D}^{J}_{MK}(\vartheta) |\phi_{K};\vartheta\rangle + (-)^{J+K} \mathscr{D}^{J}_{M-K}(\vartheta) |\phi_{\bar{K}};\vartheta\rangle \Big]$$

Rotational energy: $E(J) = E_0 + A[J(J+1)] + a(-)^{J+1/2}(J+\frac{1}{2})$

Coriolis (K=1/2)

 $^{10}\text{Be} + n$

Beryllium isotopes

- Beryllium isotopes have well known 2α cluster structure *See Dean Lee's talk*
- Appearance of halo nuclei: ¹¹Be, ¹⁴Be, others?
- Highly deformed states
- Exhibit rotational dynamics
- Intruder states and and island of inversion around N = 8

(a) σ -orbit

Figure: Y. Kanada-En'yo and H. Horiuchi. Phys. Rev. C 68 (2003) 014319.

Binding energies

Intruder ground state in ¹²Be

Beryllium isotopes

- Beryllium isotopes have well known 2α cluster structure *See Dean Lee's talk*
- Appearance of halo nuclei: ¹¹Be, ¹⁴Be, others?
- Highly deformed states
- Exhibit rotational dynamics
- Intruder states and and island of inversion around N = 8
- Shape coexistence

Bands with very different moments of inertia Different deformation (a) σ -orbit

Figure: Y. Kanada-En'yo and H. Horiuchi. Phys. Rev. C 68 (2003) 014319.

 $^{10}\text{Be} + n$

Quadrupole deformation

Beryllium isotopes

- Beryllium isotopes have well known 2α cluster structure *See Dean Lee's talk*
- Appearance of halo nuclei: ¹¹Be, ¹⁴Be, others?
- Highly deformed states
- Exhibit rotational dynamics
- Intruder states and and island of inversion around N = 8
- Shape coexistence

Bands with very different moments of inertia Different deformation (a) σ -orbit

Figure: Y. Kanada-En'yo and H. Horiuchi. Phys. Rev. C 68 (2003) 014319.

Effective single particle picture

- Many different ways to choose single particle basis
- Natural orbitals obtained by diagonalizing the density matrix

$$\hat{\rho} = \sum_{\alpha\beta} |\alpha\rangle \langle \Psi | a_{\alpha}^{\dagger} a_{\beta} | \Psi \rangle \langle \beta |$$

- Maximize occupation number of lowest orbitals

Quadrupole deformation

D. J. Rowe. Rep. Prog. Phys. 48(1985) 1419.

Nilsson Model

 $\hbar \omega = 12.5, \beta = 1$

Wood Saxon parameters: J. Suhonen. From Nucleons to Nucle Concepts of Microscopic Nuclear Theory, Chapter 3.

Nilsson Model

Acknowledgements

In collaboration with...

Patrick Fasano ANL Mark Caprio Univ. Notre Dame Pieter Maris Iowa State Univ.

Summary

- Calculated energies and proton radii for beryllium isotopes are in reasonable agreement with experiment.
- Proton deformation is similar across the beryllium isotopic chain. Neutron deformation is decreasing with increasing N, but is remarkably similar in ^{10–12}Be. Are similar patterns realized in other isotopic chains?
- We observe rotational dynamics, shape coexistence and an island of inversion.
- Occupations of single particle natural orbitals are qualitatively consistent with naive filling of Nilsson orbitals.

But we only considered one interaction here. How robust are these occupations?

Nuclear rotations

Characterized by rotation of intrinsic state $|\phi_K\rangle$ by Euler angles ϑ $(J = \mathbf{K}, \mathbf{K} + 1, \ldots)$ $|\psi_{JKM}\rangle \propto \int d\vartheta \Big[\mathscr{D}^J_{MK}(\vartheta) |\phi_K;\vartheta\rangle + (-)^{J+K} \mathscr{D}^J_{M-K}(\vartheta) |\phi_{\bar{K}};\vartheta\rangle \Big]$ 20Rotational energy: $^{12}\mathrm{Be}^ E(J) = E_0 + A[J(J+1)] + b(-)^{J+1}J(J+1)$ 15Coriolis(K=1) E_x (MeV) $N_{\rm max} = 11$ 10-m 50 2 3 Bohr and Mottelson Vol 2 .]

Robustness of band properties

Parity inversion in ¹¹Be

Parity inversion ¹³Be?

Radii

Intrinsic quadrupole moment

Protons

Neutrons

Protons

Neutrons

