

Prospects for open quantum system studies at GSI and the way to FAIR

FAIR Groundbreaking 4 July 2017 Darmstadt **FAIR Construction Site** April 2024 April 2024 – Shell construction Finished – Groundbreaking July 2017

FAIR GmbH | GSI GmbH

FAIR Project Progress – Civil Construction Construction Area South – Only TBI and landscaping missing

FAIR GmbH | GSI GmbH

Fair-28: Main Objectives - NUSTAR

Early Science Objective

HE Beam Transport Early Science (SIS18 – Super-FRS)

FAIR GmbH | GSI GmbH

Super-FRS Target area (artists' view)

FAIR GmbH | GSI GmbH

Target area components

FAIR GmbH | GSI GmbH

Area of success: All target component entering production or running

Ex Russian In-kind: rad-hard Dipoles (2) and Multipoles (2) again in production (Buckley NZ, SigmaPhi F)

Ex Russian

- vacuum system
- Local cryogenics components
- detectors

Again in production !

Sc Magnets are key components: Testing at CERN of sc magnets

Very successful tests @ CERN lon optical performance well achieved ! (99% done ,,,)

But:

Longitudinal shift

Transm. Res. pow.

1

1

0.5

>10

5

5

5

>10

magnet leaks at cold observed

Pitch

>2

>2

>2

Transm. Res. pow. Transm.

>2

>2

>2

1.7453 0.87266

Tolerances, mrad

Jaw

>2

>2

>2

>20

Res. pow.

>2

>2

>2

>10

Roll

Transm, Res. pow.

≥0.5

≥0.5

7

≥4

≥4

≥4

>2

Superconducting Magnets Re-Entering Series Production after Prototype testing and repair

Similar activity with Elytt (Dipoles) → entering series testing if running tests are successful

Repair proposal for LM11 08/11/23

www.asgsuperconductors.com

Technical issues with thermal shield brazing connections → **Reworks and Design change** was neccessary

Intense ollaboration with CERN to resolve the issue with manufacturers.

FAIR GmbH | GSI GmbH

Overall installation schedule – entering 3 dense years after a lot of stride

Prospects: First stage: High energy branch R3B/GLAD (and setup @ FHF1)

All NUSTAR Experiments possible (some in start versions @ FHF1)

FAIR GmbH | GSI GmbH

H.Simon - Halo Week '24

Exception: ring experiments & MATS LASPEC @ Super-FRS

R3B experiment

Reactions with Relativistic Radioactive Beams NeuLAN HI Beams @ 500- 1000 A MeV 30 m Tracking detectors 2 m Target + Si-Tracking otons Tracker + detectors CALIFA Tracking detectors © GSI/FAIR, Zeitrausch beam fron, SIS18/FRS is a modular and versatile setup for kinematically complete measurements of reactions with high-energy RI beams

R³B

FAIR GmbH | GSI GmbH

$R^{3}B$ in Cave C @ GSI \rightarrow preparing for FAIR

FAIR GmbH | GSI GmbH

$R^{3}B$ in Cave C @ GSI \rightarrow preparing for FAIR

2020 -

 $R^{3}B$

FAIR GmbH | GSI GmbH

First ¹²C(p,2p) experiment @ 400AMeV - "R³B prototype setup"

The ¹⁷Ne 2p halo quest (@500 AMeV)

→ Suppressed halo

www.elsevier.com/locate/physleth

Unveiling the two-proton halo character of ¹⁷Ne: Exclusive measurement of quasi-free proton-knockout reactions

C. Lehr^a, F. Wamers^{a,b}, F. Aksouh^{a,b,1}, Yu. Aksyutina^b, H. Álvarez-Pol^c, L. Atar^{a,b}, T. Aumann^{a,b,d,*}, S. Beceiro-Novo^{c,2}, C.A. Bertulani^e, K. Boretzky^b, M.J.G. Borge^f, C. Caesar^{a,b}, M. Chartier^g, A. Chatillon^b, L.V. Chulkov^{b,h}, D. Cortina-Gil^c,

Physics Letters B 827 (2022) 136957

FAIR GmbH | GSI GmbH

Neuland demonstrator @ RIKEN

- NeuLAND demonstrator (40 cm depth with 4/30 double planes and 800 readout channels) at RIKEN 2014-2017, participation in various beam times
- Several experiments performed and published (e.g. M. Duerr et al., Nature 606 (2022) 678)

FAIR GmbH | GSI GmbH

O-28 a first Landmark for fragment + 4n detection

Causallity cuts only 16% remaining background $\epsilon(3n)=2\% \epsilon(4n)=0.4\%$

Very intense RIBF beams \rightarrow detection efficiency is key !

FAIR GmbH | GSI GmbH

H.Simon - Halo Week '24

Article First observation of ²⁸O

ttps://doi.org/10.1038/s41586-023-06352
eceived: 13 October 2022
ccepted: 21 June 2023
ublished online: 30 August 2023
penaccess
Check for updates

Y. Kondo¹²²²², N. L. Achourl³, H. Al Falou^{4,5}, L. Atar⁶, T. Aumann^{8,7,8}, H. Baba², K. Boretzky⁷, C. Caesar^{5,7}, D. Calvet⁹, H. Chae¹⁰, N. Chiga², A. Corsi⁹, F. Delaunay³, A. Delbart⁹, Q. Deshayes², Zs. Dombrádl¹¹, C. A. Douma¹², A. Ekström¹³, Z. Elekes¹¹, C. Forssén¹³, I. Gašpark^{2,6,14}, J.-M. Gheller⁹, J. Gibelin³, A. Gillibert⁹, G. Hagen^{13,16}, M. Harakeh¹¹², A. Hirayama¹, C. R. Hoffman¹⁷, M. Holl^{6,7}, A. Horvat⁷, Å. Horvath¹⁶, J. W. Hwang^{19,20}, T. Isobe², W. G. Jiang¹⁹, J. Kahlbow^{2,6}, N. Kalantar-Nayestanakl¹², S. Kawase²¹, S. Klm^{19,20}, K. Klsamorl², T. Kobayashl²², D. Körper⁷, S. Koyama²³, I. Kutl¹¹, V. Lapoux⁹, S. Lindberg¹³, F. M. Marqués³, S. Masuoka²⁴, J. Mayer²⁵, K. Mikl²², T. Murakaml²⁶, M. Najafi¹², T. Nakamura¹², K. Nakano²¹, N. Nakatsuka²⁶, T. Nilsson¹³, A. Obertelll⁹, K. Ogata^{27,28,29}, F. de Oliveira Santos³⁰, N. A. Orr³, H. Otsu², T. Otsuka^{22,3}, T. Ozakl¹, V. Panin⁷, T. Papenbrock^{18,16}, S. Paschalls⁶, A. Revel^{2,30}, D. Rossl⁶, A. T. Saito¹, T. V. Saito²³, M. Sasano², H. Sato², Y. Satou³⁰, H. Schn⁴⁵, F. Schindler⁶, P. Schrock²⁴, M. Shikat¹, N. Shimizu³¹, Y. Shimizu², H. Simon⁷, D. Sohler¹¹, O. Sorlin³⁰, L. Stuhl²¹⁹, Z. H. Sun^{18,16}, S. Takeuchl¹, M. Tanaka³², M. Thoennessen³³, H. Törnqvist⁶⁷, Y. Togano¹³⁴, T. Tomal¹, J. Tscheuschner⁶, J. Tsubota¹, N. Tsunoda²⁴, T. Uesaka², Y. Utsuno³⁵, I. Vernon³⁶, H. Wang², Z. Yang², M. Yasuda¹, K. Yoneda² & S. Yoshida³⁷

Novel Neutron Detector: NeuLAND

FI SEVIER

journal homepage: www.elsevier.com/locate/nima

NeuLAND: The high-resolution neutron time-of-flight spectrometer for R³B at FAIR

K. Boretzky^{a,*}, I. Gašparić^{b,c,a}, M. Heil^a, J. Mayer^d, A. Heinz^{*}, C. Caesar^{a,c}, D. Kresan^{a,c}, H. Simon^a, H.T. Törnqvist^c, D. Körper^a, G. Alkhazov^f, L. Atar^a, T. Aumann^{c,a,g}, D. Bemmerer^b,

NIMA 1014 (2021) 165701

30 double planes 2 x 50 paddles each 5 x 5 x 250 cm³ RP408 / R8619ASSY FPGA TDC readout

➔ 4n coincident

four-momentum detection Split detector + causality cuts could be added.

From R³B prototype to R³B precursor

FAIR GmbH | GSI GmbH

R³B setup ready to move to FAIR in 2025/6

FAIR GmbH | GSI GmbH

FAIR beams (with suitable intensities)

■ Up to 20Tm beam rigdity → high energy coulomb excitation

Strange

quark

d 💽 🖸 u

 Λ particle

∧ hypernucleus

FAIR beams (with suitable intensities)

Summary

- Instrumentation suitable for halo and dripline physics constructed and commissioned within Phase-0 experiments of the R³B experiments, examples presented (Nikhil, Stefanos, ...)
- FAIR facility enables exclusively dedicated program especially suited for energetic intense secondary beams in particular also for heavy nuclei (N=126)
- Installation/(commissioning) schedule and scenario for NUSTAR experiments@FAIR presented
 - \rightarrow dedicated program during ramp up
- "If you want to build a ship, don't drum up people to collect wood and don't assign them tasks and work, but rather teach them to long for the endless immensity of the sea."
 - Antoine de Saint Exupéry

Thanks

Super-FRS project group and

FAIR GmbH | GSI GmbH

FAIR GmbH | GSI GmbH