Finite-volume simulations of few-body bound states and resonances

Sebastian König

HaloWeek'24 - nuclei at and beyond the driplines

Gothenburg, Sweden, June 14, 2024

Office of Science

Thanks...

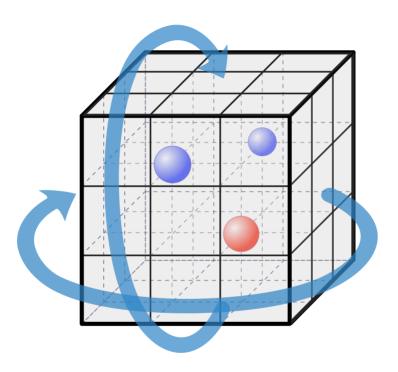
...to my students and collaborators...

- H. Yu, N. Yapa, A. Taurence, A. Andis (NCSU)
- D. Lee (FRIB/MSU), K. Fossez (FSU)
- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- U.-G. Meißner (U Bonn)
- P. Klos, J. Lynn, S. Bour, ...

...for support, funding, and computing time...

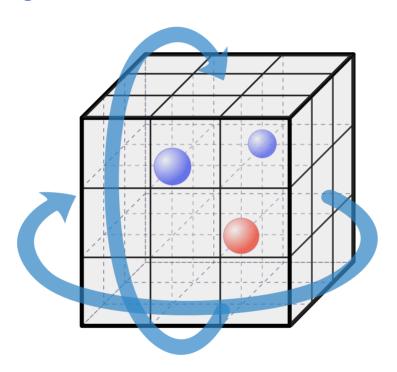
- Jülich Supercomputing Center
- NCSU High-Performance Computing Services

Quantum systems in a box



- consider an interacting set of particles (e.g., nucleons)
- place them in a finite cubic geometry...
- ...and impose periodic boundary conditions

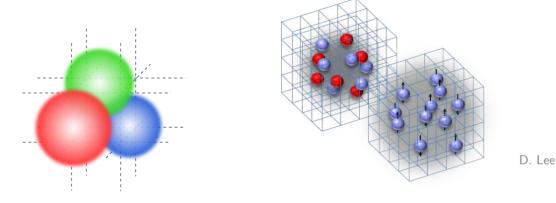
Quantum systems in a box



- consider an interacting set of particles (e.g., nucleons)
- place them in a finite cubic geometry...
- ...and impose periodic boundary conditions
- lattice spacing (if any): UV effects; box size: IR effects → physics

Relevance of finite-volume relations

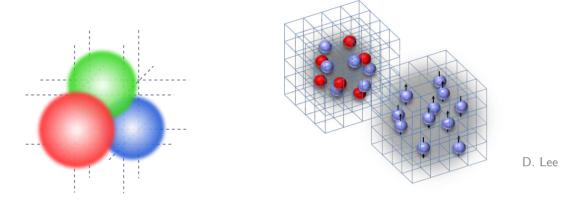
Lattice simulations



- lattice QCD: few baryons, small volumes
- Beane et al., Prog. Part. Nucl. Phys. 66 1 (2011); ...
- lattice EFT: larger volumes, many more particles
- Epelbaum et al., PRL 104 142501 (2010), ...

Relevance of finite-volume relations

Lattice simulations



- lattice QCD: few baryons, small volumes
- Beane et al., Prog. Part. Nucl. Phys. 66 1 (2011); ...
- **lattice EFT:** larger volumes, many more particles
- Epelbaum et al., PRL 104 142501 (2010), ...

Harmonic oscillator calculations

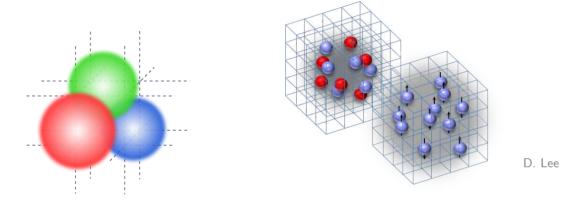
infrared basis extrapolation

- More et al, PRC **87** 044326 (2013); ...
- Busch formula: extraction of scattering phase shifts

Busch et al., Found. Phys. 28 549 (1998); ...; Zhang et al., PRL 125 112503 (2020)

Relevance of finite-volume relations

Lattice simulations



- lattice QCD: few baryons, small volumes
- Beane et al., Prog. Part. Nucl. Phys. 66 1 (2011); ...
- lattice EFT: larger volumes, many more particles

Epelbaum et al., PRL 104 142501 (2010), ...

Harmonic oscillator calculations

infrared basis extrapolation

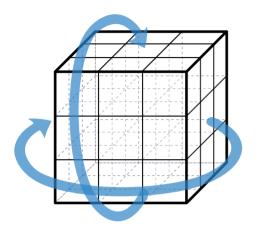
More et al, PRC 87 044326 (2013); ...

Busch formula: extraction of scattering phase shifts

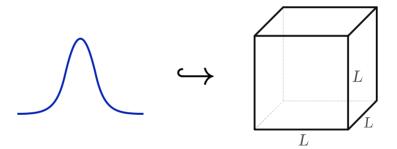
Busch et al., Found. Phys. 28 549 (1998); ...; Zhang et al., PRL 125 112503 (2020)

Dedicated finite-volume few-body simulations

Finite periodic boxes



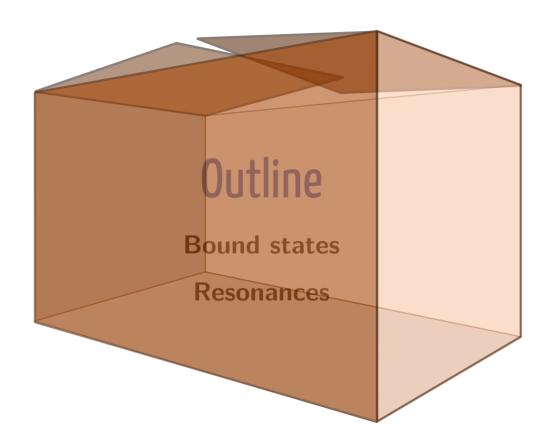
- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- leads to volume-dependent energies



Lüscher formalism

- physical properties encoded in the volume-dependent energy levels
- infinite-volume S-matrix governs discrete finite-volume spectrum
- finite volume used as theoretical tool

Lüscher, Commun. Math. Phys. 104 177 (1986); ...



Bound states

SK et al., PRL **107** 112001 (2011); Annals Phys. **327**, 1450 (2012)

SK + Lee, PLB **779** 9 (2018)

H. Yu, SK, D. Lee, PRL 131 212502 (2023)

Bound-state volume dependence

ullet finite volume affects the binding energy of states: $E_B o E_B(L)$

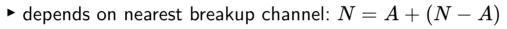
$$\Delta E_B(L) \sim - |A_\infty|^2 ext{exp}ig(-\kappa Lig)/L + \cdots$$
 , $oldsymbol{A}_\infty = ext{ANC}$

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

infinite-volume properties determine volume dependence

SK + Lee, PLB **779** 9 (2018)

ullet binding momentum $\kappa=\kappa_{A|N-A}=\sqrt{2\mu_{A|N-A}(B_N-B_A-B_{N-A})}$



- ightharpoonup asymptotic normalization constant (ANC) A_{∞}
- ullet general prefactor is polynomial in $1/\kappa L$ _{SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)}

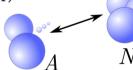
Bound-state volume dependence

ullet finite volume affects the binding energy of states: $E_B o E_B(L)$

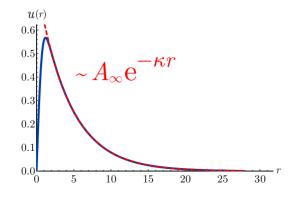
$$\Delta E_B(L) \sim -|A_\infty|^2 ext{exp}ig(-\kappa Lig)/L + \cdots$$
 , $oldsymbol{A}_\infty = ext{ANC}$

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

- infinite-volume properties determine volume dependence
- SK + Lee, PLB **779** 9 (2018)
- lacktriangleright binding momentum $\kappa=\kappa_{A|N-A}=\sqrt{2\mu_{A|N-A}(B_N-B_A-B_{N-A})}$



- ightharpoonup asymptotic normalization constant (ANC) A_{∞}
- ullet general prefactor is polynomial in $1/\kappa L$ SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)
- ANCs describe the bound-state wave function at large distances
 - ▶ important input quantities for reaction calculations



Low-energy capture reactions

•
$$p + {}^{9}\mathrm{Be} \rightarrow {}^{10}\mathrm{B} + \gamma$$

Wulf et al., PRC **58** 517 (1998)

•
$$\alpha + {}^{12}\text{C} \rightarrow {}^{16}\text{O}^* + \gamma$$

deBoer et al., RMP 89 035007 (2017), ...
 SK et al., JPG 40 045106 (2013)

Charged-particle systems

Most nuclear systems involve multiple charged particles!

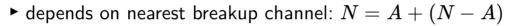
Bound-state volume dependence

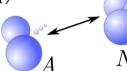
finite volume affects the binding energy of states: $E_B \to E_B(L)$

$$\Delta E_B(L) \sim -|A_\infty|^2 ext{exp}ig(-\kappa Lig)/L + \cdots$$
 , $oldsymbol{A}_\infty = ext{ANC}$

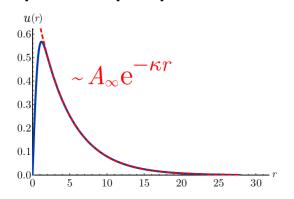
Lüscher, Commun. Math. Phys. 104 177 (1986); ...

- infinite-volume properties determine volume dependence
- SK + Lee, PLB **779** 9 (2018)
- ullet binding momentum $\kappa=\kappa_{A|N-A}=\sqrt{2\mu_{A|N-A}(B_N-B_A-B_{N-A})}$





- ightharpoonup asymptotic normalization constant (ANC) A_{∞}
- general prefactor is polynomial in $1/\kappa L$ SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)
- ANCs describe the bound-state wave function at large distances
 - ▶ important input quantities for reaction calculations



Low-energy capture reactions

- $p+{}^9{
 m Be}
 ightarrow{}^{10}{
 m B}+\gamma$ Wulf et al., PRC **58** 517 (1998) $lpha+{}^{12}{
 m C}
 ightarrow{}^{16}{
 m O}^*+\gamma$
- deBoer et al., RMP **89** 035007 (2017), ... SK et al., JPG 40 045106 (2013)

Charged-particle systems

Most nuclear systems involve multiple charged particles!

Charged-particle systems

Most nuclear systems involve multiple charged particles!

• nonrelativistic description with short-range interaction + long-range Coulomb force

$$H = H_0 + V + rac{V_C}{r} \, , \; V_C(r) = rac{\gamma}{r} = rac{2\mu lpha Z_1 Z_2}{r}$$

charged bound-state wavefunctions have Whittaker tails:

$$\psi_{\infty}(r) \sim W_{-ar{\eta},rac{1}{2}}(2\kappa r)/r \sim rac{\mathrm{e}^{-\kappa r}}{(\kappa r)^{ar{\eta}}}$$

- ▶ these govern the asymptotic volume dependence
- ► additional suppression at large distances
- lacktriangle depends on Coulomb strength: $ar{\eta} = \gamma/(2\kappa)$
- for $\alpha-\alpha$ system: $\gamma \approx 0.55~{
 m fm}^{-1}$
- details worked out by Hang Yu (→ Tsukuba postdoc)

Yu, Lee, SK, PRL 131 212502 (2023)

Coulomb = $exp \rightarrow Whittaker function$?

Coulomb = exp → Whittaker function?

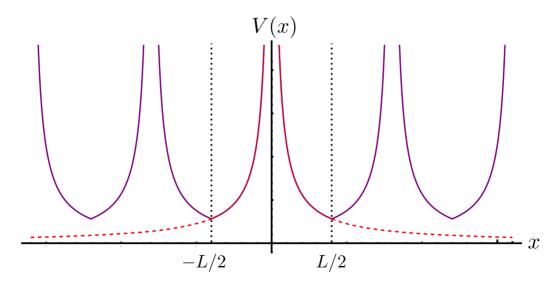
Yes, but not quite so simple...

- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r} + {f n} L)$
 - ightharpoonup trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law

- ullet short-range interaction easy to extend periodically: $V_L({f r})=\sum_{f n}V({f r}+{f n}L)$
 - lacktriangle trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

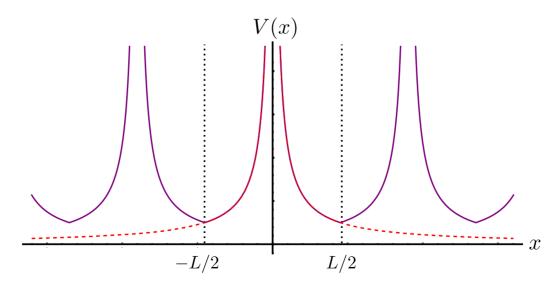
- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r} + {f n} L)$
 - ightharpoonup trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)



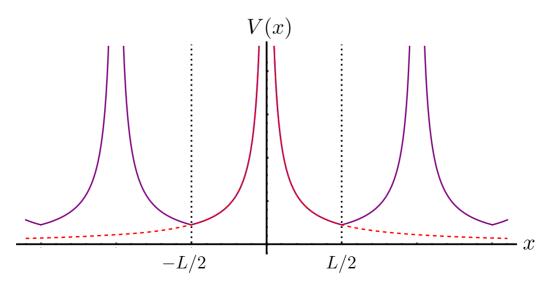
- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r} + {f n} L)$
 - ightharpoonup trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)



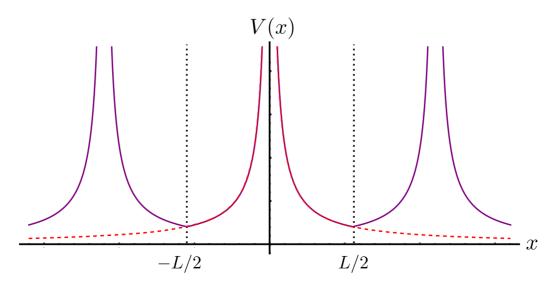
- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r}+{f n}L)$
 - lacktriangle trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)



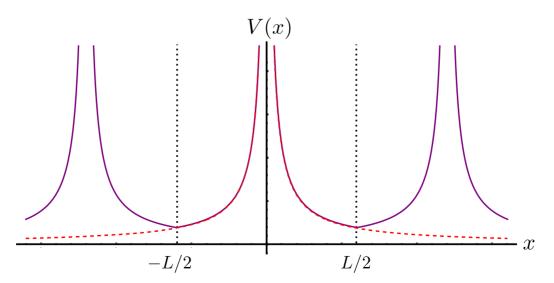
- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r}+{f n}L)$
 - lacktriangle trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)



- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r} + {f n} L)$
 - ightharpoonup trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)



Charged-particle volume dependence

- three-dimensional derivation is complicated due to nontrival boundary condition
 - ▶ can be done with two-step procedure based on formal perturbation theory
 - ► intricate details worked out by Hang Yu
 - ightharpoonup ightharpoonup leading result for S-wave states (cubic A_1^+ representation)

$$\Delta E(L) = \underbrace{-rac{3A_{\infty}^2}{\mu L}igg[W'_{-ar{\eta},rac{1}{2}}(\kappa L)igg]^2}_{\equiv \Delta E_0(L)} + \Delta ilde{E}(L) + \Delta ilde{E}'(L) + \mathcal{O}\left[\mathrm{e}^{-\sqrt{2}\kappa L}
ight] \qquad \qquad (3\mathrm{D},A_1^+)$$

Correction terms

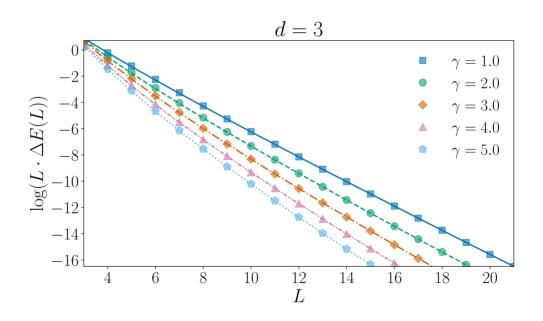
- in addition to exponentially suppressed corrections, there are two other terms
- ullet these arise from the Coulomb potential and vanish for $\gamma o 0$
- the perturbative approach makes it possible to derive their behavior

$$\Delta ilde{E}(L), \Delta ilde{E}'(L) = \mathcal{O}\left(rac{ar{\eta}}{(\kappa L)^2}
ight) imes \Delta extbf{\emph{E}}_0(extbf{\emph{L}})$$

Yu, Lee, SK, PRL 131 212502 (2023)

Numerical checks

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- ullet the Coulomb singularity at the origin is also regularized: $V_{C,
 m Gauss}(r) \sim rac{1-{
 m e}^{-r^2/R_C^2}}{1-{
 m e}^{-r^2/R_C^2}}$
 - ▶ this is equivalent to a redefinition of the short-range potential



Numerical checks

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- ullet the Coulomb singularity at the origin is also regularized: $V_{C, {
 m Gauss}}(r) \sim rac{1-{
 m e}^{-r^2/R_C^2}}{r}$
 - ▶ this is equivalent to a redefinition of the short-range potential

	Finite-volume fit			Continuum result					
γ	κ_{∞}	A_{∞}	L range	κ_{∞}	A_{∞}				
d = 1									
1.0	0.861110(3)	2.1286(1)	$12 \sim 24$	0.860	2.1284				
2.0	0.861125(9)	4.4740(9)	$12 \sim 23$	0.860	4.4782				
3.0	0.86108(6)	10.386(2)	$12 \sim 20$	0.858	10.435				
d=3									
1.0	0.8610(3)	5.039(2)	$17 \sim 28$	0.861	5.049				
2.0	0.8607(3)	11.71(4)	$15 \sim 26$	0.860	11.79				
3.0	0.8605(7)	29.95(20)	$14 \sim 24$	0.859	30.31				
4.0	0.8604(1)	83.14(10)	$14 \sim 22$	0.858	84.76				
5.0	0.8604(2)	247.9(5)	$14 \sim 18$	0.857	255.4				

Numerical checks

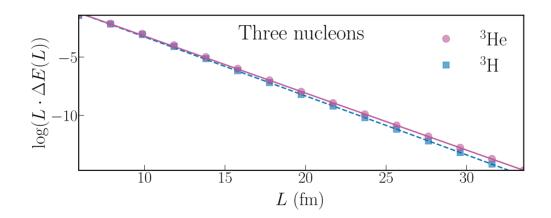
- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- ullet the Coulomb singularity at the origin is also regularized: $V_{C,
 m Gauss}(r) \sim rac{1-{
 m e}^{-r^2/R_C^2}}{r^2}$
 - ▶ this is equivalent to a redefinition of the short-range potential

	Finite-volume fit			Continuum result	
γ	κ_{∞}	A_{∞}	L range	κ_{∞}	A_{∞}
1.0	0.861110(3)	2.1286(1)	$12 \sim 24$	0.860	2.1284
2.0	0.861125(9)	4.4740(9)	$12 \sim 23$	0.860	4.4782
3.0	0.86108(6)	10.386(2)	$12 \sim 20$	0.858	10.435
1.0	0.8610(3)	5.039(2)	$17 \sim 28$	0.861	5.049
2.0	0.8607(3)	11.71(4)	$15 \sim 26$	0.860	11.79
3.0	0.8605(7)	29.95(20)	$14 \sim 24$	0.859	30.31
4.0	0.8604(1)	83.14(10)	$14 \sim 22$	0.858	84.76
5.0	0.8604(2)	247.9(5)	$14 \sim 18$	0.857	255.4

- excellent agreement with direct continuum calculations
 - ▶ obtained by solving the radial Schrödinger equation

Three-nucleon system: ³He vs. ³H

- consider pionless EFT with SU(4) symmetric contact interaction
- parameters tuned in infinite volume (very large box)
 - ► two-body interaction to produce 1 MeV deuteron
 - ▶ three-body interaction to produce physical triton
 - ightharpoonup and short-range pp counterterm to also produce physical $^3{\rm He}$



- ullet extract proton-deuteron ANC as $A_{\infty}=1.44(1)\,\mathrm{fm}^{-1/2}$
- would be off by 5% with pure short-range volume dependence fit
 - ullet significant effect given that Coulomb strengh $\gamma \sim 0.05\,\mathrm{fm}^{-1}$ is pretty small here!

Resonances

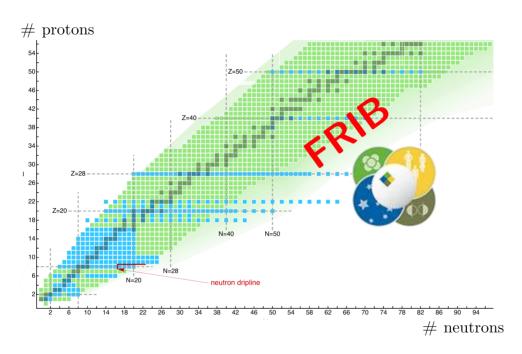
Klos, SK et al., PRC 98 034004 (2018)

Dietz, SK et al., PRC 105 064002 (2022)

Yapa, SK, PRC 106 014309 (2022)

Yu, Yapa, SK, PRC 109 014316 (2024)

Motivation



original chart: Hergert et al., Phys. Rep. 621 165 (2016)

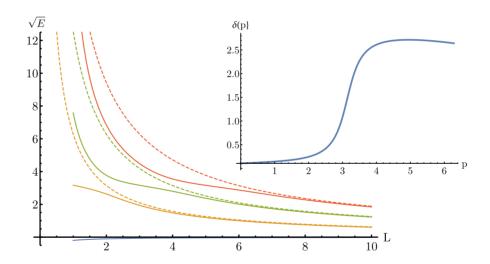
- FRIB will discover a host of unknown nuclei near the edge of stability
 - ▶ among those there are likely exotic states
 - ► halos, clusters → few-body resonances

Finite-volume resonance signatures

Lüscher formalism

- ullet finite volume o discrete energy levels o $p\cot\delta_0(p)=rac{1}{\pi L}S(E(L))$ o phase shift
- resonance contribution ↔ avoided level crossing

Lüscher, NPB **354** 531 (1991); ... Wiese, NPB (Proc. Suppl.) **9** 609 (1989); ...



 direct correspondence between phase-shift jump and avoided crossing only for twobody systems, but the spectrum signature carries over to few-body systems

Klos, SK et al., PRC 98 034004 (2018)

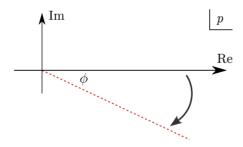
More formal look at resonances

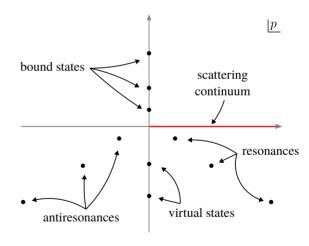
- in stationary scattering theory, resonances are described as generalized eigenstates
 - ullet S-matrix poles at comples energies $E=E_R-\mathrm{i}\Gamma/2$ (lifetime $\sim 1/\Gamma$)
 - ightharpoonup wave functions are not normalizable (exponentially growing in r-space)

Complex scaling method

one way to circumvent this problem is the complex scaling method:

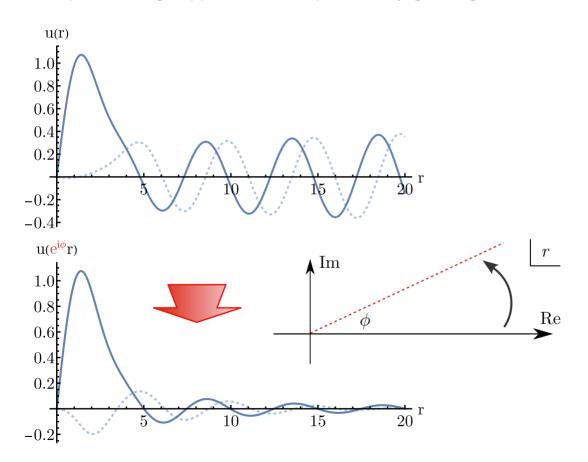
$$r
ightarrow \mathrm{e}^{\mathrm{i}\phi} r \;\; , \;\; p
ightarrow \mathrm{e}^{-\mathrm{i}\phi} p$$





Complex-scaled resonance wave functions

• complex scaling suppresses the exponentially growing tail of the wave function



calculations by Nuwan Yapa

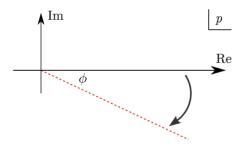
More formal look at resonances

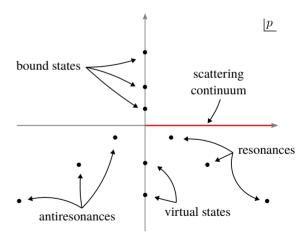
- in stationary scattering theory, resonances are described as generalized eigenstates
 - lacktriangle S-matrix poles at comples energies $E=E_R-\mathrm{i}\Gamma/2$ (lifetime $\sim 1/\Gamma$)
 - ightharpoonup wave functions are not normalizable (exponentially growing in r-space)

Complex scaling method

one way to circumvent this problem is the complex scaling method:

$$r
ightarrow \mathrm{e}^{\mathrm{i}\phi} r \;\; , \;\; p
ightarrow \mathrm{e}^{-\mathrm{i}\phi} p$$





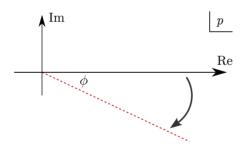
More formal look at resonances

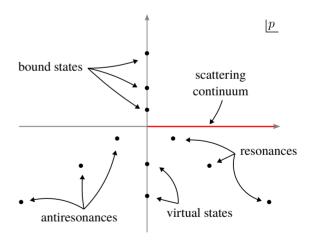
- in stationary scattering theory, resonances are described as generalized eigenstates
 - ullet S-matrix poles at comples energies $E=E_R-\mathrm{i}\Gamma/2$ (lifetime $\sim 1/\Gamma$)
 - ightharpoonup wave functions are not normalizable (exponentially growing in r-space)

Complex scaling method

one way to circumvent this problem is the complex scaling method:

$$r
ightarrow \mathrm{e}^{\mathrm{i}\phi} r \;\; , \;\; p
ightarrow \mathrm{e}^{-\mathrm{i}\phi} p$$



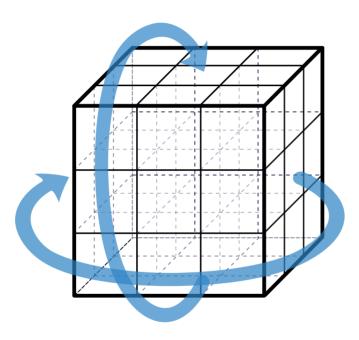


Notes

- this particular method is also called "uniform" complex scaling
- essentially, one uses a basis of complex momentum modes

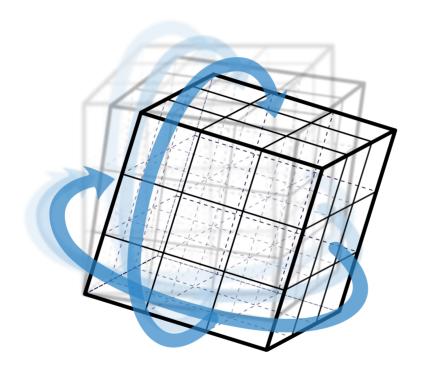
Back to the box

Consider again the peridioc boundary condition...



Back to the box

Consider again the peridioc boundary condition...



...but now in terms of complex-scaled coordinates!

Complex scaling in finite volume

Key idea

Yu, Yapa, SK, PRC 109 014316 (2024)

• put system into a box, apply peridioc boundary condition along rotated axes

Complex scaling in finite volume

Key idea

Yu, Yapa, SK, PRC 109 014316 (2024)

put system into a box, apply peridioc boundary condition along rotated axes

Volume dependence

- resonances, like bound states, correspond to isolated S-matrix poles
- complex scaling renders their wave functions normalizable
- we can adapt bound-state techniques to derive their volume dependence

$$\Delta E(L) = rac{3A_{\infty}^2}{\mu\zeta L} \Bigg[rac{\exp(\mathrm{i}\zeta p_{\infty}L)}{\mu\zeta L} + \sqrt{2} \exp(\mathrm{i}\sqrt{2}\zeta p_{\infty}L) + rac{4\exp(\mathrm{i}\zeta\sqrt{3}p_{\infty}L)}{3\sqrt{3}L} \Bigg] + \mathcal{O}\left(\mathrm{e}^{\mathrm{i}2\zeta p_{\infty}L}
ight)$$

- ullet in this equation $\zeta=\mathrm{e}^{\mathrm{i}\phi}$, $p_{\infty}=\sqrt{2\mu E(\infty)}$
- explicit form for leading term (LO) and subleading corrections (NLO)
- ullet note: dependence on volume L and complex-scaling angle ϕ

Complex scaling in finite volume

Key idea

Yu, Yapa, SK, PRC 109 014316 (2024)

put system into a box, apply peridioc boundary condition along rotated axes

Volume dependence

- resonances, like bound states, correspond to isolated S-matrix poles
- complex scaling renders their wave functions normalizable
- we can adapt bound-state techniques to derive their volume dependence

$$\Delta E(L) = rac{3A_{\infty}^2}{\mu\zeta L} \Bigg[rac{\exp(\mathrm{i}\zeta p_{\infty}L)}{2} + \sqrt{2}\exp(\mathrm{i}\sqrt{2}\zeta p_{\infty}L) + rac{4\exp(\mathrm{i}\zeta\sqrt{3}p_{\infty}L)}{3\sqrt{3}L} \Bigg] + \mathcal{O}\left(\mathrm{e}^{\mathrm{i}2\zeta p_{\infty}L}
ight)$$

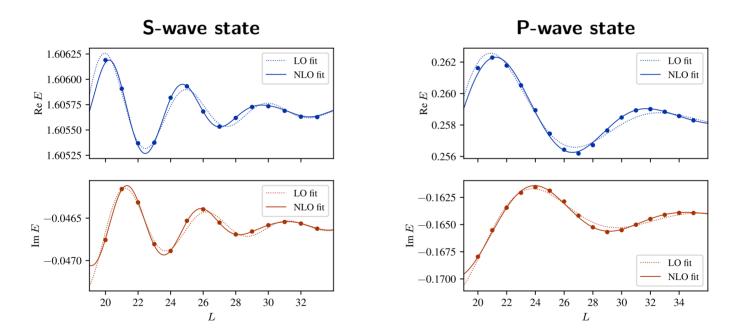
- ullet in this equation $\zeta=\mathrm{e}^{\mathrm{i}\phi}$, $p_{\infty}=\sqrt{2\mu E(\infty)}$
- explicit form for leading term (LO) and subleading corrections (NLO)
- ullet note: dependence on volume L and complex-scaling angle ϕ

Numerical implementation

ullet DVR method can be adapted to this scenario (scaling of $x,y,z \leadsto$ scaling of r)

Resonance examples

- two-body calculations are in excellent agreement with derived volume dependence
 - ► S-wave resonance generated via explicit barrier
 - ▶ P-wave resonance from purely attractive potential

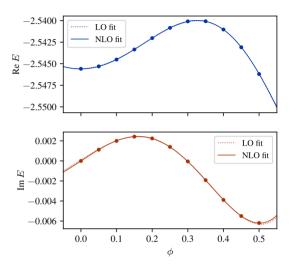


ullet fitting the $oldsymbol{L}$ dependence yields physical resonance position and lifetime!

More applications

Single-volume bound-state fitting

- bound-state energies normally remain real under complex scaling (strictly true in infinite volume)
- the finite-volume, however, induces a non-zero imaginary part
- Re E and Im E oscillate as a function of L
 ▶ and also as a function of φ
- ullet possible to fit ϕ dependence at fixed volume!



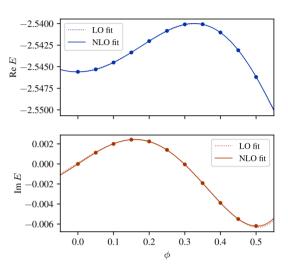
More applications

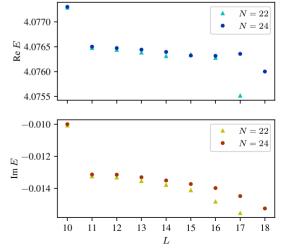
Single-volume bound-state fitting

- bound-state energies normally remain real under complex scaling (strictly true in infinite volume)
- the finite-volume, however, induces a non-zero imaginary part
- Re E and Im E oscillate as a function of L
 ▶ and also as a function of φ
- ullet possible to fit ϕ dependence at fixed volume!

Three-body resonance

- the exact volume dependence is only known for two-body system
- the complex scaled FV-DVR can however be used to study more particles
- three-boson example in decent agreement with previous avoided-crossings analysis



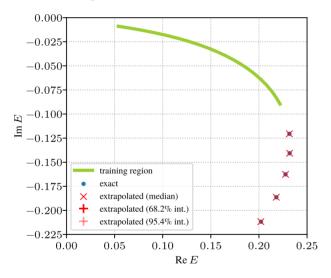


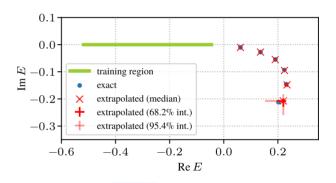
Resonance eigenvector continuation

- as the interaction changes, bound states can evolve into resonances
- resonance eigenvector continuation enables extrapolations along such trajectories

Yapa, SK, Fossez, PRC 107 064316 (2023)

Two-body examples





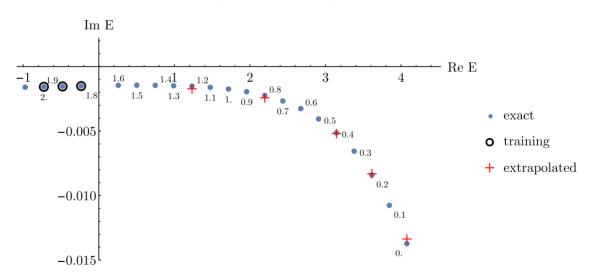
Work in progress

- extensions of the method to few- and many-body systems with N. Yapa and K. Fossez
 - ▶ Berggren basis can be used to replace simple uniform complex scaling
 - complex scaling in finite voulume enables few-body studies

Three-boson resonance trajectory

- take potential from before that generates a (genuine) three-body resonance
- add attractive two-body potential to bind system
- use eigenvector continuation (via complex scaling in FV) to extrapolate

$$V(r)=2\expigg[-\left(rac{r-3}{1.5}
ight)igg]+V_0\expig(-(r/3)^2ig)$$



confirmed with harmonic oscillator calculation (by N. Yapa)

Summary

Bound states

- wave function at large distances determines finite-volume energy shift
 - ▶ possible to extract asymptotic normalization coefficients
- volume dependence is known for arbitrary angular momentum and cluster states
- infinite-range Coulomb force complicates derivation
 - ► leading volume dependence derived for S-wave states
- volume dependence also derived for mean squared radii Taurence + SK, PRC 109 054315 (2024)

Summary

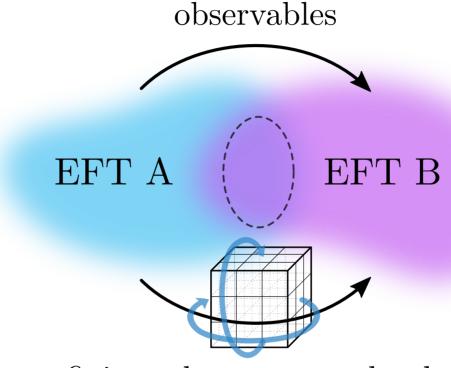
Bound states

- wave function at large distances determines finite-volume energy shift
 - ▶ possible to extract asymptotic normalization coefficients
- volume dependence is known for arbitrary angular momentum and cluster states
- infinite-range Coulomb force complicates derivation
 - ▶ leading volume dependence derived for S-wave states
- volume dependence also derived for mean squared radii Taurence + SK, PRC 109 054315 (2024)

Resonances

- finite-volume calculations provide a way to study exotic nuclei
- complex scaling method can be implemented in finite volume
 - ▶ gives direct access to resonance positions and lifetimes
 - ▶ leading volume dependence derived for two-cluster resonances
- promising numerical results also for three-body resonances
- complex scaling also enables single-volume extrapolations
- eigenvector continuation can be used to extrapolate few-body resonances

Outlook: EFT matching



- finite-volume energy levels
- (E)FTs can be matched in their overlapping regime of applicability
 - ► "analytic continuation" of theories

- related work: Detmold+Shanahan, PRD 103 074503 (2021)
- specifically, the Chiral EFT (Lattice) input can inform Halo/Cluster EFT (FV DVR)

Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa, A. Taurence, A. Andis (NCSU)
- D. Lee (FRIB/MSU), K. Fossez (FSU)
- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- U.-G. Meißner (U Bonn)
- P. Klos, J. Lynn, S. Bour, ...

...for support, funding, and computing time...

- Jülich Supercomputing Center
- NCSU High-Performance Computing Services

Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa, A. Taurence, A. Andis (NCSU)
- D. Lee (FRIB/MSU), K. Fossez (FSU)
- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- U.-G. Meißner (U Bonn)
- P. Klos, J. Lynn, S. Bour, ...

...for support, funding, and computing time...

- Jülich Supercomputing Center
- NCSU High-Performance Computing Services

...and to you, for your attention!

Backup slides

- binding energy volume dependence is governed by asymptotic tails
- other observables can be more sensitive to details of the wave function
- simplest example: mean squared radius

$$\langle r^2
angle(L) = rac{1}{2} rac{\left\langle \psi_L ig| \mathbf{r}^2 \chi_C(\mathbf{r}) ig| \psi_L
ight
angle}{\left\langle \psi_L ig| \chi_C(\mathbf{r}) ig| \psi_L
ight
angle} = \langle r_\infty^2
angle + \Delta \langle r^2
angle(L)$$

- $lacktriangleright |\psi_L
 angle$ is the periodic state at volume L
- χ_C projects onto the central box
- ullet $\Delta \langle r^2
 angle(L)$ has been worked out by undergraduate student Anderson Taurence
 - ► explicit expressions for S- and P-wave states, e.g.:

 Taurence + SK, arXiv:2401.00107 [nucl-th]

$$\begin{split} \Delta \langle r^2 \rangle_0^{A_1^+}(L) &= \\ |A_{\infty}|^2 \mathrm{e}^{-\kappa L} \left(\frac{L^2}{2\kappa} + \frac{3\left(1 - 4\kappa^2 \langle r_{\infty}^2 \rangle\right)}{4\kappa^3} + \frac{a}{\kappa^4 L} \right) \\ &+ \frac{3}{8} |\gamma|^2 L^3 \operatorname{Ei}(-\kappa L) + \mathcal{O}(\mathrm{e}^{-\sqrt{2}\kappa L}) \quad (1) \end{split}$$

Naive expectation

- typically, more tightly bound states tend to be smaller spatially
- recall, FV energy shift positive for S-wave states, negative for P-wave states
 - ▶ in general, "leading parity" determines the sign of the energy shift
- based on this, one would expect a negative FV radius shift for S-wave states

Naive expectation

- typically, more tightly bound states tend to be smaller spatially
- recall, FV energy shift positive for S-wave states, negative for P-wave states
 - ▶ in general, "leading parity" determines the sign of the energy shift
- based on this, one would expect a negative FV radius shift for S-wave states

Actual behavior

- the explicit calculation however yields a positive shift for S-waves...
- ...and the opposite sign for P-wave states

Naive expectation

- typically, more tightly bound states tend to be smaller spatially
- recall, FV energy shift positive for S-wave states, negative for P-wave states
 - ▶ in general, "leading parity" determines the sign of the energy shift
- based on this, one would expect a negative FV radius shift for S-wave states

Actual behavior

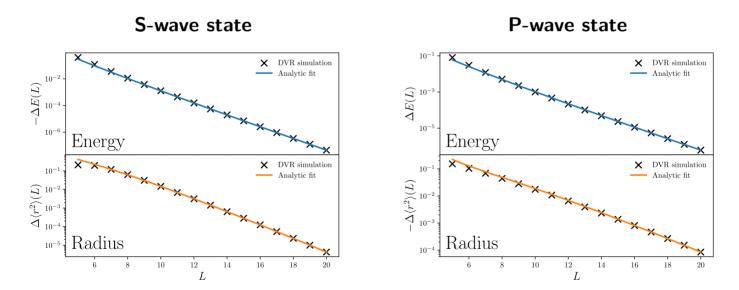
- the explicit calculation however yields a positive shift for S-waves...
- ...and the opposite sign for P-wave states

Explanation

- ullet the operator $\sim r^2$ emphasizes the large-distance behavior of the wave function
- the relaxed profile for even parity then yields a larger radius in FV

Numerical checks

- consider again bound states generated by attractive Gaussian potentials
- calculate radius in finite volume, fit known functional form
 - ightharpoonup one-parameter radius fit when ANC and κ are extracted from energy fit



- radius fits work as well as energy fits
- extracted infinite-volume radii agree well with direct benchmark calculations