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consider an interacting set of particles (e.g., nucleons)

place them in a finite cubic geometry...

...and impose periodic boundary conditions
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Quantum systems in a box
 

 

 

 

 

 

 

 

 

 

 

 

consider an interacting set of particles (e.g., nucleons)

place them in a finite cubic geometry...

...and impose periodic boundary conditions

lattice spacing (if any): UV effects; box size: IR effects  physics⇝
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Relevance of finite-volume relations
Lattice simulations

 

 

 

 

 

lattice QCD: few baryons, small volumes

lattice EFT: larger volumes, many more particles
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lattice QCD: few baryons, small volumes

lattice EFT: larger volumes, many more particles

Harmonic oscillator calculations

infrared basis extrapolation

Busch formula: extraction of scattering phase shifts
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Relevance of finite-volume relations
Lattice simulations

 

 

 

 

 

lattice QCD: few baryons, small volumes

lattice EFT: larger volumes, many more particles

Harmonic oscillator calculations

infrared basis extrapolation

Busch formula: extraction of scattering phase shifts

 
Dedicated finite-volume few-body simulations
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Lüscher, Commun. Math. Phys. 104 177 (1986); ...

Finite periodic boxes
 

physical system enclosed in finite volume (box)

typically used: periodic boundary conditions

leads to volume-dependent energies

 

 

 

 

 

 

Lüscher formalism

physical properties encoded in the volume-dependent energy levels

infinite-volume S-matrix governs discrete finite-volume spectrum

finite volume used as theoretical tool
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Outline
Bound states

Resonances
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SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

SK + Lee, PLB 779 9 (2018)

H. Yu, SK, D. Lee, PRL 131 212502 (2023)

Bound states
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Lüscher, Commun. Math. Phys. 104 177 (1986); ...

SK + Lee, PLB 779 9 (2018)

SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

Bound-state volume dependence
finite volume affects the binding energy of states: 

,  = ANC

 

infinite-volume properties determine volume dependence

general prefactor is polynomial in 

→ (L)EB EB

Δ (L) ∼ −| exp( − κL)/L + ⋯EB A∞|2
A∞

binding momentum ► κ = =κA|N−A 2 ( − − )μA|N−A BN BA BN−A

− −−−−−−−−−−−−−−−−−−−−√
depends on nearest breakup channel: ► N = A + (N − A)

asymptotic normalization constant (ANC) ► A∞

1/κL
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SK + Lee, PLB 779 9 (2018)

SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

u

~ Wulf et al., PRC 58 517 (1998)

deBoer et al., RMP 89 035007 (2017), ...

SK et al., JPG 40 045106 (2013)

Bound-state volume dependence
finite volume affects the binding energy of states: 

,  = ANC

 

infinite-volume properties determine volume dependence

general prefactor is polynomial in 

ANCs describe the bound-state wave function at large distances

 

Low-energy capture reactions

→ (L)EB EB

Δ (L) ∼ −| exp( − κL)/L + ⋯EB A∞|2
A∞

binding momentum ► κ = =κA|N−A 2 ( − − )μA|N−A BN BA BN−A

− −−−−−−−−−−−−−−−−−−−−√
depends on nearest breakup channel: ► N = A + (N − A)

asymptotic normalization constant (ANC) ► A∞

1/κL

important input quantities for reaction calculations► 

p + Be → B + γ9 10

α + C → + γ12 16O∗

⋯
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Charged-particle systems
Most nuclear systems involve multiple charged particles!
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Charged-particle systems
Most nuclear systems involve multiple charged particles!
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Yu, Lee, SK, PRL 131 212502 (2023)                         

Charged-particle systems
Most nuclear systems involve multiple charged particles!

nonrelativistic description with short-range interaction + long-range Coulomb force

charged bound-state wavefunctions have Whittaker tails:

details worked out by Hang Yu (  Tsukuba postdoc)

H = + V +  ,   (r) = =H0 VC VC

γ

r

2μαZ1Z2

r

(r) ∼ (2κr)/r ∼ψ∞ W− ,η̄
1

2

e−κr

(κr)η̄

these govern the asymptotic volume dependence► 

additional suppression at large distances► 

depends on Coulomb strength: ► = γ/(2κ)η̄

for  system: ► α − α γ ≈ 0.55 fm−1

→
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Coulomb = exp  Whittaker function?
Yes, but not quite so simple...

→
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Periodic Coulomb potential
short-range interaction easy to extend periodically: (r) = V (r + nL)VL ∑

n

trivial for finite-range potental ► V

converging sum, negligible corrections for  falling faster than power law► V
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Yu, Lee, SK, PRL 131 212502 (2023)

Charged-particle volume dependence
three-dimensional derivation is complicated due to nontrival boundary condition

 

Correction terms

in addition to exponentially suppressed corrections, there are two other terms

these arise from the Coulomb potential and vanish for 

the perturbative approach makes it possible to derive their behavior

can be done with two-step procedure based on formal perturbation theory► 

intricate details worked out by Hang Yu► 

 leading result for S-wave states (cubic  representation)► ⇝ A+
1

   ΔE(L) = + Δ (L) + Δ (L) + O [ ] (3D,  )−
3A2

∞

μL
[ (κL)]W ′

− ,η̄
1

2

2

  
≡Δ (L)E0

E
~

E
~′

e− κL2√ A+
1

γ → 0

Δ (L), Δ (L) = O ( ) × Δ (L)E
~

E
~′ η̄

(κL)2
E0
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Numerical checks
the relations can be checked with explicit numerical calculations

simple lattice discretization with attrative Gaussian potentials

the Coulomb singularity at the origin is also regularized: (r) ∼VC,Gauss
1 − e− /r2 R

2
C

r
this is equivalent to a redefinition of the short-range potential► 

p. 16
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Numerical checks
the relations can be checked with explicit numerical calculations

simple lattice discretization with attrative Gaussian potentials

the Coulomb singularity at the origin is also regularized: 

excellent agreement with direct continuum calculations

(r) ∼VC,Gauss
1 − e− /r2 R

2
C

r
this is equivalent to a redefinition of the short-range potential► 

obtained by solving the radial Schrödinger equation► 
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Three-nucleon system: 3He vs. 3H
consider pionless EFT with SU(4) symmetric contact interaction

parameters tuned in infinite volume (very large box)

extract proton-deuteron ANC as 

would be off by 5% with pure short-range volume dependence fit

two-body interaction to produce 1 MeV deuteron► 

three-body interaction to produce physical triton► 

add Coulomb and short-range  counterterm to also produce physical 3He► pp

= 1.44(1)A∞ fm−1/2

significant effect given that Coulomb strengh  is pretty small here!► γ ∼ 0.05 fm−1
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Klos, SK et al., PRC 98 034004 (2018)

Dietz, SK et al., PRC 105 064002 (2022)

Yapa, SK, PRC 106 014309 (2022)

Yu, Yapa, SK, PRC 109 014316 (2024)

Resonances
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original chart: Hergert et al., Phys. Rep. 621 165 (2016)

Motivation

FR
IB

FRIB will discover a host of unknown nuclei near the edge of stability

among those there are likely exotic states► 

halos, clusters  few-body resonances► ⇝

p. 19



Lüscher, NPB 354 531 (1991); ...

Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

Klos, SK et al., PRC 98 034004 (2018)

Finite-volume resonance signatures
Lüscher formalism

finite volume  discrete energy levels   phase shift

resonance contribution  avoided level crossing

 

 

 

 

 

 

 

 

 

direct correspondence between phase-shift jump and avoided crossing only for two-

body systems, but the spectrum signature carries over to few-body systems

→ → p cot (p) = S(E(L))δ0
1

πL
→

↔
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 "reveals" the resonance regime  

 

 

 

 

 

 

 

 

 

More formal look at resonances
in stationary scattering theory, resonances are described as generalized eigenstates

Complex scaling method

one way to circumvent this problem is the complex scaling method:

S-matrix poles at comples energies  (lifetime )► E = − iΓ/2ER ∼ 1/Γ

wave functions are not normalizable (exponentially growing in -space)► r

r → r   ,    p → p                                                                           eiϕ e−iϕ

⇝ bound states

resonances

virtual statesantiresonances

scattering

continuumIm

Re

p
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calculations by Nuwan Yapa

Complex-scaled resonance wave functions
complex scaling suppresses the exponentially growing tail of the wave function
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More formal look at resonances
in stationary scattering theory, resonances are described as generalized eigenstates

Complex scaling method

one way to circumvent this problem is the complex scaling method:

Notes

this particular method is also called "uniform" complex scaling

essentially, one uses a basis of complex momentum modes

S-matrix poles at comples energies  (lifetime )► E = − iΓ/2ER ∼ 1/Γ

wave functions are not normalizable (exponentially growing in -space)► r

r → r   ,    p → p                                                                           eiϕ e−iϕ

⇝ bound states

resonances

virtual statesantiresonances

scattering

continuumIm

Re

p
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Back to the box
Consider again the peridioc boundary condition...
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Back to the box
Consider again the peridioc boundary condition...

 

 

 

 

 

 

 

 

 

 

 

 

...but now in terms of complex-scaled coordinates!
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Yu, Yapa, SK, PRC 109 014316 (2024)

Complex scaling in finite volume
Key idea

put system into a box, apply peridioc boundary condition along rotated axes

p. 25



Yu, Yapa, SK, PRC 109 014316 (2024)

Complex scaling in finite volume
Key idea

put system into a box, apply peridioc boundary condition along rotated axes

Volume dependence

resonances, like bound states, correspond to isolated S-matrix poles

complex scaling renders their wave functions normalizable

we can adapt bound-state techniques to derive their volume dependence

in this equation , 

explicit form for leading term (LO) and subleading corrections (NLO)

note: dependence on volume  and complex-scaling angle 

  ΔE(L) = [ exp(iζ L) + exp(i ζ L) + ] + O ( )
3A2

∞

μζL
p∞ 2–√ 2–√ p∞

4 exp(iζ L)3
–

√ p∞

3 L3–√
ei2ζ Lp∞

ζ = eiϕ =p∞ 2μE(∞)− −−−−−−√

L ϕ
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Yu, Yapa, SK, PRC 109 014316 (2024)

Complex scaling in finite volume
Key idea

put system into a box, apply peridioc boundary condition along rotated axes

Volume dependence

resonances, like bound states, correspond to isolated S-matrix poles

complex scaling renders their wave functions normalizable

we can adapt bound-state techniques to derive their volume dependence

in this equation , 

explicit form for leading term (LO) and subleading corrections (NLO)

note: dependence on volume  and complex-scaling angle 

Numerical implementation

DVR method can be adapted to this scenario (scaling of   scaling of )

  ΔE(L) = [ exp(iζ L) + exp(i ζ L) + ] + O ( )
3A2

∞

μζL
p∞ 2–√ 2–√ p∞

4 exp(iζ L)3
–

√ p∞

3 L3–√
ei2ζ Lp∞

ζ = eiϕ =p∞ 2μE(∞)− −−−−−−√

L ϕ

x, y, z ⇝ r

p. 25



    S-wave state     P-wave state

Resonance examples
two-body calculations are in excellent agreement with derived volume dependence

fitting the  dependence yields physical resonance position and lifetime!

S-wave resonance generated via explicit barrier► 

P-wave resonance from purely attractive potential► 

L

p. 26



bound-state energies normally remain real under

complex scaling (strictly true in infinite volume)

the finite-volume, however, induces a non-zero

imaginary part

 and  oscillate as a function of 

possible to fit  dependence at fixed volume!

More applications
Single-volume bound-state fitting

Re E Im E L

and also as a function of ► ϕ

ϕ
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bound-state energies normally remain real under

complex scaling (strictly true in infinite volume)

the finite-volume, however, induces a non-zero

imaginary part

 and  oscillate as a function of 

possible to fit  dependence at fixed volume!

the exact volume dependence is only known for

two-body system

the complex scaled FV-DVR can however be

used to study more particles

three-boson example in decent agreement with

previous avoided-crossings analysis

More applications
Single-volume bound-state fitting

Three-body resonance

Re E Im E L

and also as a function of ► ϕ

ϕ
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Yapa, SK, Fossez, PRC 107 064316 (2023)

 

 

 

with N. Yapa and K. Fossez

Resonance eigenvector continuation
as the interaction changes, bound states can evolve into resonances

resonance eigenvector continuation enables extrapolations along such trajectories

Two-body examples

Work in progress

extensions of the method to few- and many-body systems

Berggren basis can be used to replace simple uniform complex scaling► 

complex scaling in finite voulume enables few-body studies► 
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Three-boson resonance trajectory
take potential from before that generates a (genuine) three-body resonance

add attractive two-body potential to bind system

use eigenvector continuation (via complex scaling in FV) to extrapolate

confirmed with harmonic oscillator calculation (by N. Yapa)

V (r) = 2 exp[− ( )] + exp(−(r/3 )
r − 3

1.5
V0 )2

p. 29



Summary
Bound states

wave function at large distances determines finite-volume energy shift

volume dependence is known for arbitrary angular momentum and cluster states

infinite-range Coulomb force complicates derivation

volume dependence also derived for mean squared radii Taurence + SK, PRC 109 054315 (2024)

possible to extract asymptotic normalization coefficients► 

leading volume dependence derived for S-wave states► 
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Summary
Bound states

wave function at large distances determines finite-volume energy shift

volume dependence is known for arbitrary angular momentum and cluster states

infinite-range Coulomb force complicates derivation

volume dependence also derived for mean squared radii Taurence + SK, PRC 109 054315 (2024)

Resonances

finite-volume calculations provide a way to study exotic nuclei

complex scaling method can be implemented in finite volume

promising numerical results also for three-body resonances

complex scaling also enables single-volume extrapolations

eigenvector continuation can be used to extrapolate few-body resonances

possible to extract asymptotic normalization coefficients► 

leading volume dependence derived for S-wave states► 

gives direct access to resonance positions and lifetimes► 

leading volume dependence derived for two-cluster resonances► 
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related work: Detmold+Shanahan, PRD 103 074503 (2021)

Outlook: EFT matching
 

EFT A EFT B

observables

finite-volume energy levels

(E)FTs can be matched in their overlapping regime of applicability

specifically, the Chiral EFT (Lattice) input can inform Halo/Cluster EFT (FV DVR)

"analytic continuation" of theories► 
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Backup slides
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Taurence + SK, arXiv:2401.00107 [nucl-th]

Radius volume dependence
binding energy volume dependence is governed by asymptotic tails

other observables can be more sensitive to details of the wave function

simplest example: mean squared radius

 has been worked out by undergraduate student Anderson Taurence

⟨ ⟩(L) = = ⟨ ⟩ + Δ⟨ ⟩(L)r2 1

2

⟨ (r) ⟩ψL∣∣r2χC ∣∣ψL

⟨ | (r)| ⟩ψL χC ψL

r2
∞ r2

 is the periodic state at volume ► | ⟩ψL L

 projects onto the central box► χC

Δ⟨ ⟩(L)r2

explicit expressions for S- and P-wave states, e.g.:► 

Δ⟨ (L) =r2⟩
A

+
1

0

| ( + + )A∞|2e−κL L2

2κ

3 (1 − 4 ⟨ ⟩)κ2 r2
∞

4κ3

a

Lκ4

+ |γ Ei(−κL) + O( )
3

8
|2

L3 e− κL2√ (1)
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Radius volume dependence
Naive expectation

typically, more tightly bound states tend to be smaller spatially

recall, FV energy shift positive for S-wave states, negative for P-wave states

based on this, one would expect a negative FV radius shift for S-wave states

in general, "leading parity" determines the sign of the energy shift► 

p. 35
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Radius volume dependence
Naive expectation

typically, more tightly bound states tend to be smaller spatially

recall, FV energy shift positive for S-wave states, negative for P-wave states

based on this, one would expect a negative FV radius shift for S-wave states

Actual behavior

the explicit calculation however yields a positive shift for S-waves...

...and the opposite sign for P-wave states

Explanation

the operator  emphasizes the large-distance behavior of the wave function

the relaxed profile for even parity then yields a larger radius in FV

in general, "leading parity" determines the sign of the energy shift► 

∼ r
2
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S-wave state

 

P-wave state

 

Radius volume dependence
Numerical checks

consider again bound states generated by attractive Gaussian potentials

calculate radius in finite volume, fit known functional form

radius fits work as well as energy fits

extracted infinite-volume radii agree well with direct benchmark calculations

one-parameter radius fit when ANC and  are extracted from energy fit► κ

p. 36


