Calorimeters for Muon Collider

Discussion leader : Jim Hirschauer

LPC Colliders of Tomorrow 12 Oct 2023

(NB : HGCAL-like calorimeter covered in previous LPC CoT talk; not much today)

General requirements for future calorimeters

• Documented in DOE BRN for HEP Detector R&D from 2020.

- Energy Resolution : 4% resolution for PF jets allows discrimination between hadronic decays of W and Z bosons
 - Essential for e+e- colliders where ZH is required for Higgs total width measurement
- Timing resolution :
 - 5 ps per shower to match HL-LHC pile-up rejection at 100 TeV pp collider
 - 10 ps per shower to provide particle ID for SM and new particles at any collider
- High longitudinal and transverse granularity for pile-up rejection, particle flow, and jet substructure.

	TR 1.3.1: Jet resolution: 4% particle
TD 1 9	flow jet energy resolution
1 K 1.3:	TR 1.3.2: High granularity: EM cells of
Calorimetry for e^+e^-	$0.5 \times 0.5 \text{ cm}^2$, hadronic cells of $1 \times 1 \text{ cm}^2$
	TR 1.3.3: EM resolution : $\sigma_E/E = 10\%/\sqrt{E} \bigoplus 1\%$
	TR 1.3.4: Per shower timing resolution of 10 ps
TD 1 4.	Generally same as e^+e^- (TR 1.3) except
1 K 1.4	TR 1.4.1: Radiation tolerant to 4 (5000) MGy and
Calorimetry for	$3 \times 10^{16} (5 \times 10^{18}) n_{eq}/cm^2$
	in endcap (forward) electromagnetic calorimeter
100 TeV pp	TR 1.4.2: Per shower timing resolution of 5 ps

EPJC (2018) 78:426

Particle ID from time-of-flight

- In addition to identification of out-of-time backgrounds, good timing resolution provides particle identification for SM and BSM particles.
- ~1 ps timing precision allows K/π separation up ~20 GeV momentum!

• Momentum reach for heavy BSM particles extends further, obviously.

https://psec.uchicago.edu/Simulation/tim_credo_Rome_paper.pdf

Fig. 1. The separations of pions, kaons, and protons, the difference in the time it takes two different particles with the same momentum to travel 1.5 m, as a function of momentum. Large time-of-flight detector systems have a time resolution on the order of 100 ps [2]-[4].

Muon Collider

Why use Muon Collider to probe higher mass scales?

- Muons are heavy
 - Small synchrotron radiation.
 - Compact accelerator+storage rings.
- Muons are fundamental
 - All particle energy available for each collision.
 - Momentum of initial state is known.
- Good efficiency (power/luminosity)

Parameter	Unit	Higgs Factory	3 TeV	10 TeV
COM Beam Energy	TeV	0.126	3	10
Collider Ring Circumference	km	0.3	4.5	10
Interaction Regions		1	2	2
Est. Integ. Luminosity	ab ⁻ 1/year	0.002	0.4	4
Peak Luminosity	$10^{34} \text{ cm}^{-2} \text{ s}^{-1}$	0.01	1.8	20
Repetition rate	Hz	15	5	5
Time between collisions	μs	1	15	33
Bunch length, rms	mm	63	5	1.5
IP beam size σ^* , rms	μm	75	3	0.9
Emittance (trans), rms	mm-mrad	200	25	25
β function at IP	cm	1.7	0.5	0.15
RF Frequency	MHz	325/1300	325/1300	325/1300
Bunches per beam		1	1	1
Plug power	MW	~ 200	~ 230	~ 300
Muons per bunch	10 ¹²	4	2.2	1.8
Average field in ring	Т	4.4	7	10.5

Muon Collider Detector

https://muoncollider.web.cern.ch/design/muon-collider-detector

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

superconducting solenoid (3.57T)

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding.

Calorimeter radiation requirements

- Radiation levels for Muon Collider calorimeter are generally lower than for HL-LHC
 - Not an issue for readout electronics, silicon detectors, silicon photomultipliers
- Radiation tolerance will impact choice of scintillators

	NIEL [1 MeV-neq/cm ²]	TID [Mrad]
FCC-hh Endcap Calo*	3E+16	400
HGCAL Si	1E+16	200
HGCAL Scint+SiPM	5E+13	
MuCol ECAL**	1E+14	1

*FCC-hh CDR

** Crilin paper (https://doi.org/10.1016/j.nima.2022.167817)

Hadronic shower containment at high CM energy

- Calorimeter thickness required for constant shower containment has ~logarithmic dependence on particle energy.
- Shower containment not a significant challenge even for 10 TeV muon collider.

Beam Induced Background (BIB)

- Beam muon daughters interact with machine components producing ~continuous flux of particles interacting in detectors.
 - 2e12 muons/bunch
 - Collision spacing : 1-15 us

62.5	750
3.9×10^5	4.7×10^6
5.1×10^{6}	4.3×10^5
3.4×10^8	1.6×10^8
$4.6 imes 10^7$	4.8×10^7
2.6×10^6	1.5×10^6
2.2×10^4	$6.2 imes 10^4$
$2.5 imes 10^3$	2.7×10^3
	$\begin{array}{c} 62.5\\ 3.9\times 10^5\\ 5.1\times 10^6\\ 3.4\times 10^8\\ 4.6\times 10^7\\ 2.6\times 10^6\\ 2.2\times 10^4\\ 2.5\times 10^3\\ \end{array}$

arXiv:1905.03725

Beam Induced Background (BIB)

- Beam muon daughters interact with machine components producing ~continuous flux of particles interacting in detectors.
 - 2e12 muons/bunch
 - Collision spacing : 1-15 us

beam energy [GeV]	62.5	750
μ decay length [m]	3.9×10^5	4.7×10^6
μ decays/m per beam	5.1×10^{6}	4.3×10^5
photons ($E_{\rm ph.}^{kin} > 0.2 \text{ MeV}$)	3.4×10^8	1.6×10^8
neutrons ($\dot{E}_{n}^{kin} > 0.1 \text{ MeV}$)	4.6×10^7	4.8×10^7
electrons ($E_{\rm el.}^{kin} > 0.2 {\rm MeV}$)	2.6×10^6	1.5×10^6
charged hadrons ($E_{\rm ch.had.}^{kin} > 1 \text{ MeV}$)	2.2×10^4	$6.2 imes 10^4$
muons ($E_{\rm mu.}^{kin} > 1 {\rm MeV}$)	2.5×10^3	2.7×10^3

arXiv:1905.03725

BIB calorimeter occupancy

https://muoncollider.web.cern.ch/calorimeters

Occupancy per BX for E>0.2 MeV (no timing) at calorimeter surface:

- ECAL Barrel: 0.9 hits/cm²
- ECAL Endcap: 0.2 hits/cm²
- HCAL Barrel: 0.06 hits/cm²
- HCAL Endcap: 0.02 hits/cm²

BIB identification in calorimeters

Timing information is essential for removal of BIB.

- Precision order of 100–250 ps is useful.
- Time measurements in hadronic showers complicated

Good granularity also essential for BIB removal

- Both longitudinal and transverse granularity
- Clustering and particle flow performance will be important to simultaneously remove BIB, identify sub-structure, and obtain excellent energy resolution.

Current single cell timing resolution

- CMS HGCAL (Si sampling calorimeter) obtains ~100 ps resolution for single cells with energy > ~150 MIP.
 - 150 MIP ~ 150 MeV (order of magnitude) for electrons

Time structure of hadronic showers

- Inherently slower evolution of hadronic showers makes time measurements less useful.
 - Detailed study of front HCAL layers required.
- Data from CALICE WHCAL 30-layer SiW sampling calorimeter with 10 GeV pi-.

https://doi.org/10.1016/j.phpro.2012.02.371

Calorimeter optimization

- **Cost** → as low as possible
- EM energy resolution → total absorption to address sampling fluctuations → monolithic crystals (CMS PbWO₄ ECAL)
- Hadronic energy resolution → dual readout (scintillation + Cherenkov) to address fluctuations in EM fraction (DREAM or IDEA)
- EM timing resolution
 - Segmentation to minimize variation of light paths
 - Bright, fast, rad-hard scintillators → higher cost
- Transverse granularity → higher cost
 - No introduction of dead material \rightarrow minimal impact on energy resolution
- Longitudinal granularity → higher cost
 - dead material → harms energy resolution

Dual Readout (DRO) for hadronic energy resolution

arXiv:1712.05494

- Solution to f_{EM} fluctuations : measure f_{EM} eventby-event through separate measurements of Scintillation (S) and Cherenkov (C) signals.
 - C signal dominated by EM component since is produced only by relativistic particles
- Measure (h/e) for S and C with test beam to determine χ factor.
- Measure S and C separately event-by-event in situ and use χ to determine E.

$$\cot g \theta = \frac{1 - (h/e)_S}{1 - (h/e)_C} = \chi$$

$$E = \frac{S - \chi C}{l - \chi}$$

nic energy resolution

arXiv:1712.05494

• DREAM detector

4 mm

CalVision : Crystal ECAL + DRO

https://detectors.fnal.gov/projects/calvision/

- Homogenous, total absorption crystal ECALs provide optimal resolution of 3% / sqrt(E)
- Apply DRO to crystal for ultimate ECAL + HCAL system.
- How to separate S and C in homogenous crystal?
 - Wavelength and pulse shape (time)
 - Angular distribution, polarization
- Wavelength separation using SiPMs with crystal-

	Scintillation	f_S	Cherenkov	fc
	[photons/GeV]	[%]	[photons/GeV]	[%]
Generated	200000	100	56000	100
Collected	10000	5.0	2130	3.8
Detected by NUV SiPM #1 ($\lambda < 550 \text{ nm}$)	2000	1.0	140	0.25
Detecteroghini,siEnn@,(Jushy,n@t	al JINST 1	5<(2002	20) P al100	5 0.3

Annotation from Y. Lai (UMD) CALOR 2022

CalVision : Crystal ECAL + DRO

- Homogenous, total absorption crystal ECALs provide optimal resolution of 3% / sqrt(E)
- Apply DRO to crystal for ultimate ECAL + HCAL system.
- How to separate S and C in homogenous crystal?
 - Wavelength and pulse shape (time)
 - Angular distribution, polarization
- Timing separation based on prompt C signal and slower S signal.
- Smart front-end electronics essential for prompt S/C separation based on timing.

arXiv:1712.05494

Segmented Crystal ECAL

20

- Segmented Crystal EM Precision Calorimeter (SCEPCal) concept.
- 2 timing layers (T1, T2)
 - Fast, bright crystals (LYSO:Ce)
 - 3mm thick (1 X0)
 - Provides 20 ps timing precision for MIPs
- 2 EM calorimetric segments using DRO-capable crystals (PbWO4, BGO, BSO)
 - No dead material between segments (read out from front and back)
 - 2 segments improve photon separation in general
 - 2 segments provide segmentation for BIB

PbWO4 separation of 2 photons with 3° opening angle

Lucchini, Eno, Tully, et al JINST 15 (2020) P11005

SCEPCAL materials

Lucchini, Eno, Tully, et al JINST 15 (2020) P11005

Table 1. Comparison of some of the key crystal properties for HEP applications. From left to right: crystal name, density, interaction length, radiation length, Molière radius, light yield relative to that of PbWO₄, scintillation decay time, photon time density and estimated cost for mass production.

Crystal	ρ	λ_I	X ₀	R _M	LY/LY ₀	$ au_D$	Photon density	Est. cost
	[g/cm ³]	[cm]	[cm]	[cm]	[a.u.]	[ns]	[photons/ns]	$[%/cm^2/X_0]$
PbWO ₄	8.3	20.9	0.89	2.00	1	10	0.10	7.1
BGO	7.1	22.7	1.12	2.23	70	300	0.23	7.8
BSO	6.8	23.4	1.15	2.33	14	100	0.14	7.8
CsI	4.5	39.3	1.86	3.57	550	1220	0.45	8.0

Table 2. Photon yield for both Cherenkov and scintillation light in response to a 45 GeV electron shower in the rear SCEPCal segment assuming a PbWO₄ crystal and the SiPM spectral sensitivity shown in figure 24 (left).

	Scintillation f_S Cherenkov		Cherenkov	fc
	[photons/GeV]	[%]	[photons/GeV]	[%]
Generated	200000	100	56000	100
Collected	10000	5.0	2130	3.8
Detected by NUV SiPM #1 ($\lambda < 550 \text{ nm}$)	2000	1.0	140	0.25
Detected by RGB SiPM #2 ($\lambda > 550 \text{ nm}$)	< 20	< 0.01	160	0.3

50 C photons/GeV sufficient that photostatistics do not impact energy resolution

21

Crilin : CRystal calorImeter with Longitudinal INformation

 Muon collider specific EM calorimeter focusing on timing and longitudinal segmentation for minimizing BIB.

Key properties:

- Fine granularity : 5 layers of 10x10x40 mm³
- Timing resolution ~100 ps @ 1 GeV
- Good energy resolution ~ 10% / sqrt(E)
- of ABS plateth cost reference Si-W reference (!!)
 - Highly modular

SiPM array (1 crystal)

https://www.sciencedirect.com/science/article/abs/pii/S0168900222011093 E. Diociaiuti, IMC Collaboration Mtg, Sep 2023 and the second

https://www.sciencedirect.com/science/article/abs/pii/S0168900222011093 E. Diociaiuti, IMC Collaboration Mtg, Sep 2023

Crilin 2023 Beam Test

Evaluated single crystals of

- PbF2 with UV-extended SiPMs
- PbWO₄-UF crystals.

Crystal	PbF ₂	PWO-UF
Density [g/cm ³]	7.77	8.27
Radiation length [cm]	0.93	0.89
Molière radius [cm]	2.2	2.0
Decay constant [ns]	-	0.64
Refractive index at 450 nm	1.8	2.2
Manufacturer	SICCAS	Crytur

Crilin 2023 Beam Test Results

arXiv:2308.01148

- PbF2 outperforms PbWO4 b/c all light is Cherenkov, Cherenkov is "faster" than UF scintillator
- Back illumination outperforms Front because Front suffers from strong timing dependence on particle location on face of crystal.

PbF₂

PbWO₄-UF

Join us for Calo R&D at LPC!

• The CalVision collaboration is active here at the LPC working on a couple fronts:

Using wavelength, timing, polarization in homogeneous calorimetry to improve hadronic resolution while maintaining state-of-the-art EM resolution and developing novel particle-flow and machine-learning algorithms for application in DRO calorimetry.

- While CalVision nominally targets an e+e- Higgs factories, the same principles can be applied at a Muon Collider.
- Most recent work targeting characterization and optimization of timing properties : How does optimal timing for DRO crystal calorimeters depend on segmentation, orientation/arrangement of photosensors, material properties, wavelength sensitivity, etc.?
- New Initiatives 2023 Awardee https://detectors.fnal.gov/seeding-new-ideas/

PI: Grace Cummings

Co-PI: Jim Hirschauer, Jim Freeman, Hans Wenzel (all Fermilab)

Maximal Information Calorimetry – characterizing picosecond timing capabilities of total absorption dual-readout calorimeters This proposal aims to understand the picosecond timing capabilities of dual-readout (DR) crystal calorimeters. The DR method is the separate measurement of the electromagnetic and hadronic components of a hadronic shower through the independent readout of scintillation and Cerenkov light. This optimizes energy

resolution through separate calibration of each component. We propose to study the timing resolution achievable with such a DR calorimeter using the separate time measurements of scintillation (S) and Cerenkov (C) light pulses. This proposal brings the new thrust of picosecond timing to the CalVision consortium, which performs R&D for DR calorimetry for the FCC-ee.

Additional Material

Scintillator radiation tolerance

- Extensive R&D by RY Zhu (Caltech) and others.
- Recently:
 - doi:10.1088/1742-6596/1162/1/012022
 - arXiv:2203.06788

	BGO	BSO	PWO	PbF ₂	PbFCI
Density (g/cm ³)	7.13	6.8	8.3	7.77	7.11
Melting point (°C)	1050	1030	1123	824	608
X ₀ (cm)	1.12	1.15	0.89	0.94	1.05
R _M (cm)	2.23	2.33	2.00	2.18	2.33
λ _ι (cm)	22.7	23.4	20.7	22.4	24.3
Z _{eff} value	71.5	73.8	73.6	76.7	74.7
dE/dX (MeV/cm)	8.99	8.59	10.1	9.42	8.68
Emission Peak ^a (nm)	480	470	425 420	١	420
Refractive Index ^b	2.15	2.68	2.20	1.82	2.15
LY (ph/MeV) ^c	7,500	1,500	130	١	150
Decay Time ^a (ns)	300	100	30 10	١	3
d(LY)/dT (%/°C) ^c	-0.9	?	-2.5	١	?
Cost (\$/cc)	6.0	7.0	7.5	6.0	?

	Csl	LYSO:Ce	BaF ₂	BaF ₂ :Y
Density (g/cm ³)	4.51	7.4	4.89	4.89
Melting points (°C)	621	2050	1280	1280
X ₀ (cm)	1.86	1.14	2.03	2.03
R _M (cm)	3.57	2.07	3.10	3.10
λ _ι (cm)	39.3	20.9	30.7	30.7
Z _{eff}	54.0	64.8	51.6	51.6
dE/dX (MeV/cm)	5.56	9.55	6.52	6.52
λ _{peak} ^a (nm)	420 310	420	300 220	300 220
Refractive Index ^b	1.95	1.82	1.50	1.50
Normalized Light Yield ^{a,c}	4.2 1.3	100	42 4.8	1.7 4.8
Total Light yield (ph/MeV)	1,650	30,000	13,000	2,000
Decay time ^a (ns)	30 6	40	600 0.5	600 0.5
LY in 1 st ns (photons/MeV)	100	740	1,200	1,200
1st ns LY/Total LY (%)	6.1%	2.5%	9.2%	60%

28

Collider Calorimeters

- ALICE FoCal-E (Si-W sampling) + FoCal-H (Cu + Scintillator fiber)
- https://indico.cern.ch/event/847884/contributions/4833007/attachments/2444499/4188638/RS_Calor-2022-RS.pdf
- CEPC high granularity, crystal ECAL
- https://indico.cern.ch/event/847884/contributions/4833028/attachments/2444738/4189238/20220516_R&D of a novel high granularity crystal ECAL.pdf
- SiD digital ECAL with large area MAPS
- https://indico.cern.ch/event/847884/contributions/4833035/attachments/2444859/4189669/calor2022-brau.pdf
- RADiCAL Compact, rad-hard, ECAL
- https://indico.cern.ch/event/847884/contributions/4833038/attachments/2444198/4188065/RADiCAL-Ultracompact Radiation-hard Fast-timing EM Calorimetry.pdf
- ADRIANO2 High granularity, Dual readout (lead-glass + plastic scintillator tiles)
- https://indico.cern.ch/event/847884/contributions/4833201/attachments/2445108/4189657/CALOR2022_20220517.pdf
- Crilin
- https://indico.cern.ch/event/847884/contributions/4833216/attachments/2444171/4191530/Crilin-Calor_v3.pdf
- CalVision Dual Readout
- https://indico.cern.ch/event/847884/contributions/4833223/attachments/2446287/4193575/CALOR Lai.pdf
- IDEA and DREAM dual readout

Reference Calorimeter Details

https://muoncollider.web.cern.ch/calorimeters

ECAL

- Barrel: 40 layers of Tungsten absorber (1.9 mm) + Silicon Pad sensor; cell size: 5x5 mm2; r_min = 1500 mm; r_max = 1702 mm; half_length = 2210 mm; symmetry = dodecahedron
- Endcap: 40 layers of Tungsten absorber (1.9 mm) + Silicon Pad sensor; cell size: 5x5 mm2; r_max = 1700 mm; z_min = 2307; z_max = 2509; symmetry = dodecahedron

HCAL

- Barrel: 60 layers of Steel absorber (19 mm) + plastic scintillating tiles; cell size: 30x30 mm2; r_min = 1740 mm; r_max = 3330 mm; half_length = 2210 mm; symmetry = dodecahedron
- Endcap: 60 layers of Steel absorber (19 mm) + plastic scintillating tiles; cell size: 30x30 mm2; r_max = 3246 mm; z_min = 2539; z_max = 4129; symmetry = dodecahedron