# 2023 Pb-Pb run: Scenarios for beam and machine parameters



R. Bruce With essential inputs from many colleagues



### Introduction

#### **Re-scheduling after IT8 incident**

- Foreseen now to start ion physics on Sept 25-26
- 1 week earlier and 1 week more than in schedule pre IT-8

#### LHC 2023 schedule:

- 1 week pp reference run 4 days Pb commissioning
- 32 days of Pb-Pb physics operation
- 1 day of MD
- lon run relies on several new concepts
  - Slip-stacked 50-ns beams

  - Crystal collimation New DS collimators in IR2
  - Faster ramp&squeeze, reaching directly final  $\beta^*$  at top energy
- Run preparations ongoing





### **Physics goals**

- Run 3+4 Pb-Pb physics goal: 13 nb<sup>-1</sup> for ATLAS, ALICE, CMS
  - Same goal as before 20% cut in physics time and cancellation of 2022 ion run
  - Needed 2.6 nb<sup>-1</sup> per one-month run, assuming five runs in total, as before cancellation of 2022 runs
- 2023 physics goals
  - input from experiments, see F. Moortgat @ Chamonix 2023
  - 3.25 nb<sup>-1</sup> at ALICE
    - would give 13 nb<sup>-1</sup> in four runs, as assumed after cut of 2022 ion run
  - 3 nb<sup>-1</sup> at ATLAS/CMS
  - 0.4 nb<sup>-1</sup> at LHCb
- The goals are ambitious see next slide



### Projected 2023 performance, Pb-Pb

#### Simulated integrated luminosity over 27 days in nb<sup>-1</sup>

| 6.8 Z TeV, 50%     | IP1/5 | IP2 | IP8  |
|--------------------|-------|-----|------|
| 1240_1200_1240_0   | 2.8   | 3.  | Θ.   |
| 1144_1144_1144_239 | 2.7   | 3.  | 0.2  |
| 1088_1088_1088_398 | 2.6   | 2.9 | 0.33 |
| 1032_1032_1032_557 | 2.5   | 2.8 | 0.43 |
| 976_976_976_716    | 2.5   | 2.8 | 0.52 |
| 733_702_733_468    | 1.9   | 2.1 | 0.39 |

| 6.8 Z TeV, 62%     | IP1/5 | IP2 | IP8  |
|--------------------|-------|-----|------|
| 1240_1200_1240_0   | 3.5   | 3.7 | Θ.   |
| 1144_1144_1144_239 | 3.3   | 3.7 | 0.24 |
| 1088_1088_1088_398 | 3.2   | 3.6 | 0.4  |
| 1032_1032_1032_557 | 3.1   | 3.5 | 0.54 |
| 976_976_976_716    | 3.    | 3.4 | 0.64 |
| 733_702_733_468    | 2.4   | 2.6 | 0.48 |

Physics goals are met with 62% OP efficiency, but not with 50%

(3.25 nb-1 at ALICE; 3 nb-1 at ATLAS/CMS; 0.4 nb-1 at LHCb)



#### **Beam parameters and filling schemes**

- Baseline: rely on 50 ns slip-stacked beams
  - Range of schemes available with different sharing between experiments
  - 1240b\_1088\_1088\_398 is the baseline

|   |                     | n.o. comsions at |       |      |     |         |
|---|---------------------|------------------|-------|------|-----|---------|
|   | Filling scheme      | n.o. bunches     | IP1/5 | IP2  | IP8 | spacing |
|   | 1240b_1240_1200_0   | 1240             | 1240  | 1200 | 0   | 50 ns   |
| _ | 1240b_1144_1144_239 | 1240             | 1144  | 1144 | 239 | 50 ns   |
|   | 1240b_1088_1088_398 | 1240             | 1088  | 1088 | 398 | 50 ns   |
|   | 1240b_1032_1032_557 | 1240             | 1032  | 1032 | 557 | 50 ns   |
|   | 1240b_976_976_716   | 1240             | 976   | 976  | 716 | 50 ns   |
|   | 733b_733_702_468    | 733              | 733   | 702  | 468 | 75 ns   |

- Projected Pb beam parameters in collision
  - Based on LIU target for injection, with some degradation before reaching collision

|                                            |            |      | (     |
|--------------------------------------------|------------|------|-------|
|                                            | LHC design | 2018 | Run 3 |
| Beam energy (Z TeV)                        | 7          | 6.37 | 6.8   |
| Bunch spacing (ns)                         | 100        | 75   | 50    |
| Total n.o. bunches                         | 592        | 733  | 1240  |
| Bunch intensity (10 <sup>7</sup> Pb ions)  | 7          | 21   | 18    |
| Normalized transverse emittance ( $\mu$ m) | 1.5        | 2.3  | 1.65  |
|                                            |            |      | -     |

n a sallisiana at



#### **Optics: very similar to 2018**

- Prepared in 2022 by S. Fartoukh
- β\*=0.5 m at IP1/2/5, 1.5 m at IP8

|                                         | IP1 | IP2        | IP5 | IP8  |
|-----------------------------------------|-----|------------|-----|------|
| $\beta^*$ (m)                           | 0.5 | 0.5        | 0.5 | 1.5  |
| crossing plane                          | V   | V          | Η   | Н    |
| spectrometer half crossing ( $\mu$ rad) | 0   | <b>∓72</b> | 0   | -139 |
| external half crossing ( $\mu$ rad)     | 170 | $\pm 170$  | 170 | -135 |
| net half crossing ( $\mu$ rad)          | 170 | $\pm$ 98   | 170 | -274 |
| spectrometer polarity                   | -   | pos/neg    | -   | pos  |

#### Will do ALICE polarity reversal in the middle of the run

- As in 2018, reverse crossing angle during physics beam process  $\rightarrow$ Need large 3.5 mm parallel separation for beam-beam

- Luminosity levelling targets:
  - L=6.4×10<sup>27</sup> cm<sup>-2</sup> s<sup>-1</sup> for IP1/2/5
    - Could potentially be higher for IP1/5
       L=1.0×10<sup>27</sup> cm<sup>-2</sup> s<sup>-1</sup> at IP8
  - - Kept at this value in 2018 to be safe from quenches due to BFPP
    - Could potentially be a bit higher
  - Assuming separation levelling at all IPs, no  $\beta^*$ -levelling



#### 2023 Ion cycle

- Use shorter cycle, doing the full squeeze to 0.5m in the ramp

  - Skips squeeze at flat top
    OK for power converters and aperture to respect 15  $\sigma$  in IR8, decrease external crossing to 135 urad at FT
  - See LBOC talk
- Most optics commissioning already done during the proton period
  - About 1 shift remains



#### **Overview of ion cycle**



|                                            | Injection           | Flat top            | Physics                          |
|--------------------------------------------|---------------------|---------------------|----------------------------------|
| Energy (Z TeV)                             | 0.45                | 6.8                 | 6.8                              |
| β* (m) IP1,2,5,8                           | 11, 10, 11, 10      | 0.5, 0.5, 0.5, 1.5  | 0.5, 0.5, 0.5, 1.5               |
| Half external crossing (µrad)<br>IP1,2,5,8 | 170, 170, 170, -170 | 170, 170, 170, -135 | 170, <del>±</del> 170, 170, -135 |
| Parallel separation (mm)<br>IP1,2,5,8      | -2, 3, 2, -3        | -0.55, 3, 0.55, -3  | Separation levelling             |



## Collimation

- 2023 ion run will rely on collimators not used in standard proton operation
  - crystal collimation to be used throughout the cycle need improved cleaning to deal with lifetime drops (10 Hz events?) in combination with significantly increased intensity
  - New IR2 TCLD collimators needed to alleviate BFPP losses and avoid quenches at nominal luminosity for new upgraded ALICE detector
- All crystals collimators from Run 2 exchanged with new improved design
  - Settings shown in dedicated talk
- Involved calculations of BLM thresholds with crystals see dedicated talks

### **Alleviation of collisional losses**

- Ultra-peripheral electromagnetic interactions create secondary beams with changed charge-to-mass ratio
  - Bound-Free pair production, source of one-electron ions → magnet quench below operational luminosity
- Alleviation techniques
  - IR1/5: Orbit bumps successfully deployed already in Run 2 to steer losses into empty connection cryostat
  - IR2: bumps alone do not work need bumps + new dispersion suppressor collimator (TCLDs) → new in 2023
  - ÌR8: usé bumps to steer losses from cell 10 to cell 12, where they are more spread out and BLM threshold is higher → new in 2023

10



Connection cryostat ("missing dipole")



- Ion commissioning to start in about 3 weeks, ion physics 4 days later
- 2023 run relying on several new concepts and hardware: slip-stacked beams, crystal collimation, TCLD collimators, full squeeze in ramp
- Important to prepare everything well...