

Collimation settings for the ion run

R. Cai, R. Bruce, M. D'Andrea, P. Hermes, B. Lindstrom, D. Mirarchi, S. Redaelli

1 September 2023

Table of content

- Crystal collimation for Pb ions
- Proposed changes in ion collimation
 - Crystal scheme for ion collimation
 - Skew TCSGs
 - Standard secondary absorber collimators
 - TCLAs
 - TCTs
- Conclusions

Crystal collimation for Pb ions

Challenges of future ion collimation:

- Ion fragmentation which changes mass-to-charge ratio.
- Higher stored beam energy.
- Delayed installation of the 11T dipoles.

Advantages of crystal collimation:

- Reduced fragmentation.
- Ability to handle the target stored beam energy.
- Better collimation performance.

Crystal collimation operation:

- Bent crystal is the primary collimator.
- Crystalline planes can "channel" the incoming halo particles.
- The bend provides a significant angular kick.
- The channeled halo is intercepted by a downstream absorber.

Proposed changes in ion collimation

01/09/2023

R. Cai | Collimation settings for the ion run

Crystal scheme for ion collimation

Baseline is to use the standard collimation system with the same settings as in the proton run, but with a few changes discussed in the following

- Crystals inserted as primaries at 5 σ :
 - Previous MDs explored even tighter settings (4.5 to 4.75 σ).
 - However, larger primary opening improves beam lifetime and decreases sensitivity to 10Hz losses.
 - Smaller aperture difference between crystal and absorber to allow deeper hits into the absorber and higher number of absorbed particles.

• Standard secondary collimators used as absorbers

- TCSG.D4L7.B1, TCSPM.B4L7.B1, TCSG.D4R7.B2, TCSPM.B4R7.B2: kept at standard setting of 6.5 σ.
- kept at standard setting of 6.5 σ .
- TCPs at 6 σ instead of 5 σ :
 - The losing of hierarchy was observed in the 2023 beam tests.
 - Increases distance from TCPC to ensure to always have TCPC as primary collimator.

Skew TCSGs

- In the vertical plane, there are two skew collimators between the crystal and the absorber.
- Grazing impacts of the channeled halo on these collimators have been observed in measurements and simulations.
 - Grazing beam may deteriorate cleaning due to shorter active length and potential higher out-scattering.
 - However, simulations show no difference in cleaning efficiency in DS with different settings. -> Experimental data needed.
- Keep tentatively the skew TCSGs at 6.5 σ .

01/09/2023

R. Cai | Collimation settings for the ion run

Standard secondary absorber collimators

• The collimators used as absorbers are:

- At injection: TCSG.D4L7.B1, TCSG.B4L7.B1, TCSG.D4R7.B2, TCSG.B4R7.B2.
- At flat top: TCSG.D4L7.B1, TCSPM.B4L7.B1, TCSG.D4R7.B2, TCSPM.B4R7.B2.

• During ramp in the horizontal planes:

- TCSG is gradually retracted.
- TCSPM is gradually inserted from a 0.5 σ retraction.
- This poses risks of grazing beams -> proposal to have only one absorber during the entire ramp.
- Flat top settings kept at the standard 6.5 σ .

TCLAs

- Previous crystal studies have shown a reduction of the Q8-9 loss cluster with tighter TCLA settings.
- Main inner limit from risk of hitting TCLAs with mis-kicked beam during asynchronous dump
 - TCLAs made of tungsten -> same damage limit as for TCTs
 - Onset of plastic deformation at about 5x10⁹ protons at 7 TeV (about 5.6 kJ impacting energy)
 - Simulations show that even at the 7 σ, the highest summed energy density (~300 J/m) is significantly below the limit.
- Proposal to tighten the TCLAs to 8 σ from 10 σ .

TCTs

- In previous ion runs, high experimental background observed occasionally, originating from showers from TCTs.
- Dumps on TCTs observed during high beam losses (10 Hz events). $\frac{\sigma}{S}$
- Both issues could be mitigated by a more open TCT setting.
- Proposal to open the TCT setting as much as possible without jeopardizing aperture protection
 - final setting can be decided based on the aperture measurements in the commissioning position TCTs 1 σ inside the measured aperture
 - Tentatively assuming a 9.5 σ TCT setting
- Checking also risks of damaging TCTs during an asynchronous dump - simulated impacts over a range of TCT settings for singlemodule pre-fire type 2:
 - Energy density far below damage limit even with TCT at 6 σ .
 - Not limited by asynchronous dump with current optics.

Conclusions

Proposals

- Baseline for collimation in 2023 ion run: use standard collimation system with same settings as for protons with a few changes.
- TCPs opened from 5 to 6 σ to guarantee hierarchy and safe operations.
- TCLA tightened to 8 σ from 10 σ to reduce the losses in Q8-9.
- Asynchronous dump scenario does not pose any restrictions on TCLAs and TCTs.

Action points

- Collect experimental data to finalize skew collimator settings
- Collect aperture measurements to finalize TCT settings
- Finalize one absorber collimator for the horizontal planes

Collimator	Proposed
TCP	6 σ
TCPC	5 σ
TCSG.B5L/R7.B1/2, TCSG.A5L/R7.B1/2	6.5 σ (TBF)
TCLA	8 σ
тст	9.5 σ (TBF)

home.cern