

BLM threshold strategy for the 2023 Pb run

Anton Lechner, Belen Salvachua, Sara Vigo Morales, Marco D'Andrea, Roderik Bruce on behalf of BLMTWG

With input from MPP, collimation team, BE/OP, MP3, TE/MSC etc.

01/09/2023

Introduction

- 2023 Pb run important differences wrt past, which affect threshold settings:
 - Somewhat higher beam energy (6.8 vs 6.37 ZTeV) and hence reduced quench margin
 - 6x higher luminosity in IP2 (6.4×10²⁷ cm⁻²s⁻¹ vs 1×10²⁷ cm⁻²s⁻¹) and slightly higher luminosity in IP1/5
 - New systems (crystal-assisted collimation, TCLD collimator in DS next to IR2)
- This presentation outlines the general BLM strategy for
 - **IR7** betatron losses
 - BFPP losses in IR1/2/5/8
 - Losses induced by wire scanner in **IR4**

For more details, see the last BLMTWG meeting: <u>https://indico.cern.ch/event/1318581/</u> ECR is being prepared

Losses in IR7: recap of the <u>2018</u> Pb run (6.37 ZTeV)

- **Collimation leakage from IR7 to cold magnets:** •
 - O(100) times worse than for protons •
 - Pb collimation quench test 2015@6.37 ZTeV \rightarrow DS • dipole quench (cell 9) at peak power loss of 15 kW
- **BLM thresholds in 2018 Pb run:**
 - Thresholds at IR7 collimators were set to 12.5 kW \rightarrow • dump slightly below quench level
 - Thresholds at IR7-DS magnets were aligned to the • quench level (signals measured in the quench test)
- **Experience from 2018 Pb run:**
 - No beam-induced quench in operation •
 - But 7 out of 48 physics fills dumped in IR7 ("10Hz" • events \rightarrow these are not classical slow losses)
 - In almost half of the fills, reached 40% of dump level •

Losses in IR7: considerations for 2023 Pb run

- Crystal-assisted collimation is the baseline for the 2023 heavy ion run at 6.8 ZTeV
 - Reduces relative leakage to DS magnets in cell 9 and 11 compared to 2018
 - Can afford a higher power loss in IR7 despite the higher beam energy (i.e. lower quench level)
 - However, the maximum allowed power loss in IR7 without quenching is still affected by some uncertainty → roughly estimated to be between 30 and 50 kW

If the BLM thresholds are set too conservatively, premature beam dumps can severely affect the ion run performance (considering in particular the 70% higher beam intensity than in 2018)

R. Bruce, Outcome of the 2022 Pb ion test, LMC #453

Losses in IR7: thresholds strategy for 2023 Pb run

• We therefore propose an performance-oriented BLM threshold approach for 2023:

- The <u>master</u> thresholds for betatron losses shall allow for a power loss of 50 kW (cold magnets in IR7 DS) to 60 kW (IR7 collimators) for a duration of 10 sec
- The actual power loss in IR7 can be controlled by adjusting Monitor Factor → the operational quench margin of IR7 DS magnets can be probed
- If a quench occurs, the thresholds will be lowered again, avoiding further quenches
- No magnets with possibly non-conform diodes are concerned
- Power deposition in IR7 collimators@60 kW:
 - The most impacted collimators are the secondaries intercepting the channelled beam, as well as nearby collimators
 - The total power deposition in collimator jaws is estimated to be comparable or less than for HL-LHC proton operation
 - The maximum power density in the coatings for TCSPM is estimated to be O(200 W/cm3) for an impact parameter of 1 mm → considered acceptable

Losses in IR7: BLM thresholds@collimators

- Collimator BLM thresholds are based on 2022 loss maps (ion test), but might require adjustments during commissioning
- Note: the BLM patterns in IR7 are quite different for std and crystal collimation

SY

Accelerator Systems

B. Salvachua, S. Morales, Vigo BLMTWG #96

Family	BLM	Factor 6.8 TeV	Factor 450 GeV	kW master channell ing	kW master amorph ous
	Crystal in Channeling	4.75 sigma			
THRI_COLL_7_TCLA_LO_ION	BLMTI.06L7.B2I10_TCLA.D6L7.B2	1 511	0.17	62 (86)	13
** need but is at noise levels	but is at noise levels BLMTI.06R7.B1E10_TCLA.D6R7.B1		0.17	50 (50)	13
THRI COLL 7 TOSPM LO TON H CH	BLMTI.04L7.B1E10_TCSPM.B4L7.B1	1.27	1.27	57 (21)	+100
THRI_COLL_7_TCSPM_LO_TON_H_CH	BLMTI.04R7.B2I10_TCSPM.B4R7.B2	1.27		50 (45)	+100
THRE COLL 7 TOSPM TO TON V CH	BLMTI.04L7.B1E10_TCSG.D4L7.B1	0.44	2.3	50 (100)	+100
THRI_COLL_7_TCSPM_LO_TON_V_CH	BLMTI.04R7.B2I10_TCSG.D4R7.B2			52 (51)	+100
	BLMTI.04L7.B1E10_TCSG.B4L7.B1	1.45	1.45	200 (26)	+100
THELCOLL 7 TOSC LO TON H CH	BLMTI.04L7.B1E10_TCSG.A4L7.B1			50 (58)	+100
THRI_COLL_/_TCSG_LO_ION_H_CH	BLMTI.04R7.B1E10_TCSG.A4R7.B1			58 (184)	+100
	BLMTI.04R7.B2I10_TCSG.A4R7.B2			50 (109)	+100
THRE COLL 7 TOSC ME TON V CH	BLMTI.05L7.B1E10_TCSG.A5L7.B1	0.44	0.01	57 (53)	+100
Inki_coll_/_losg_Me_lok_v_ch	BLMTI.05R7.B2I10_TCSG.A5R7.B2	0.44		50 (139)	+100
Crystal in Amorphous 4.75 sigma					
THRE COLL 7 TOSC ME ION V AM	BLMTI.06L7.B2I10_TCSG.6L7.B2	0.0155	0.05	45 (65)	15
THRI_COLL_/_TCSG_ME_ION_V_AM	BLMTI.06R7.B1E10_TCSG.6R7.B1	0.0156		56 (25)	22
THRE COLL 7 TOOPH TO TON H AM	BLMTI.05L7.B2I10_TCSPM.E5L7.B2	0.027	0.09	47 (54)	20
THRI_COLL_/_TCSPM_LO_ION_H_AM	BLMTI.05R7.B1E10_TCSPM.E5R7.B1	0.027		58 (337)	27

- Created **dedicated BLM families** for dumping on losses in the **two different planes**
- Selected at least 2 monitors per beam and plane to have some redundancy
- Caveat: cross-talk can lead to dumps below the target power values if high losses occur simultaneously on both beams in H plane

Table to be updated

to 60 kW

Losses in IR7: leakage to other regions

- A priori, we only plan to apply the power limits to the collimator and magnet master thresholds in IR7 and the adjacent DS, but not necessarily to other regions (except IR3)
- In 2018, IR7 leakage to TCTs (IR1) and TCSP (IR6) was mitigated by retracting individual TCP and TCSP jaws, hence no threshold changes for collimation leakage were needed \rightarrow similar approach in 2023

SY

CÉRN

Losses in IR7: Monitor Factor (MF) settings

- **Propose a staged approach for the Monitor Factor (applied thresholds):**
 - Initially use MF=0.4 for IR7 collimators and IR7 DS magnets
 - In case of premature dumps w/o quench, allow for a MF increase in steps of 0.2 → increase to be decided jointly by BLMTWG, MPP, collimation team and OP.
 - If a quench occurs, the settings will be reverted to the previous one

Allowed power loss by BLM thresholds at IR7 collimators:

SY

Accelerator Systems

	Duration	Proton run 2023		Proposal for Pb run 2023 (with crystals))
		Master	Applied (MF=0.6)	Master	Pb ions (MF = 0.4)	Pb ions (MF=0.6)	Pb ions (MF=0.8)	Pb ions (MF=1.0)
RS08	0.655 s	500 kW	300 kW	60 kW	24 kW	36 kW	48 kW	60 kW
RS09	1.31 s	500 kW	300 kW	60 kW	24 kW	36 kW	48 kW	60 kW
RS10	5.24 s	500 kW	300 kW	60 kW	24 kW	36 kW	48 kW	60 kW
RS11	20.97 s	239 kW	143 kW	29 kW	12 kW	17 kW	23 kW	29 kW
RS12	83.89 s	100 kW	60 kW	12 kW	5 kW	7 kW	10 kW	12 kW
					Initial		Possible steps	

Collision losses in experimental IRs and DS

- Experimental insertions (IR1/2/5/8)
 - Power deposition dominated by hadronic and EMD collision products
 - Far below quench level, no BLM threshold changes in IR due to collision products expected

• Dispersion suppressors (next to IR1/2/5/8)

- Distinct loss peaks from **bound-free pair** production (BFPP)
- Special measures put in place to avoid BFPPinduced quenches (orbit bumps in IR1/5/8, TCLD collimators + orbit bumps in IR2)
- BLM threshold strategy: local threshold adjustments to avoid premature dumps (and BLM warnings) on BFPP ions below the target luminosities

	2018	2023 (planned)
Beam energy	6.37 <i>Z</i> TeV	6.8 <i>Z</i> TeV
L _{inst} (IP1)	6.2×10 ²⁷ cm ⁻² s ⁻¹	6.4×10 ²⁷ cm ⁻² s ⁻¹
L _{inst} (IP2)	1×10 ²⁷ cm ⁻² s ⁻¹	6.4×10 ²⁷ cm ⁻² s ⁻¹
L _{inst} (IP5)	6.2×10 ²⁷ cm ⁻² s ⁻¹	6.4×10 ²⁷ cm ⁻² s ⁻¹
L _{inst} (IP8)	1×10 ²⁷ cm ⁻² s ⁻¹	1×10 ²⁷ cm ⁻² s ⁻¹

SY

Accelerator Systems

Secondary ion losses due to BFPP (IR1/5)

- Use local orbit bumps to shift losses to connection cryostat in cell 11 (upstream of Q11) to mitigate the risk of quenches
- Successfully used in 2018 run up to 6.2 ×10²⁷ cm⁻²s⁻¹ and will be the baseline for 2023
- 2023 Pb run: need to increase BLM thresholds at Q11 (yellow circle) due to higher energy, but no risk of quench if losses stay in cryostat

SY

Accelerator Systems

(STI)

CÉRN

Simulation of loss distribution:

	2018	2023		
E	6.37 <i>Z</i> TeV	6.8 <i>Z</i> TeV		
L _{inst}	6.2×10 ²⁷ cm ⁻² s ⁻¹	6.4×10 ²⁷ cm ⁻² s ⁻¹		
P _{BFPP}	143 W	160 W		

Special case 11L5: MB.B11L5 has possibly a nonconform diode: quenches in this MB and the neighboring dipoles shall be avoided (LHC-BLM-ECR-0071) \rightarrow will keep lower thresholds at two BLMs (**black circles**) to make sure that BFPP losses remain in cryostat

Secondary ion losses due to BFPP (IR2)

- In IR2, the TCLD collimators will be used the first time Pb physics operation in 2023
- No risk of quench, but need BLM thresholds at TCLD and adjacent MQ.11 (to be aligned with BFPP signals)

Power deposition simulations show that for a 30 σ collimator gap (ightarrow 2 mm impact):

 \Rightarrow No risk to quench bus bars of connection cryostat

SY

Accelerator Systems

 \Rightarrow No risk to quench downstream magnets (factor of 10 below quench level)

	2018	2023
E	6.37 <i>Z</i> TeV	6.8 <i>Z</i> TeV
L _{inst} (IP2)	1×10 ²⁷ cm ⁻² s ⁻¹	6.4×10 ²⁷ cm ⁻² s ⁻¹
P _{BFPP}	23 W	160 W

CÉRN

Losses induced by wire scanner in IR4

• Ion test in 2022:

- A dump occurred at the Q10 magnet next to IR4 while performing a wire scan
- The Q10 magnets have reduced BLM thresholds, due to the risk of detecting symmetric quenches only with some delay (LHC-BLM-ECR-0051)
- Performing a rough scaling, the dump limit on the Q10 BLMs is estimated to be around 0.7E11-1E11 charges at 6.8 TeV

BLM threshold settings:

- The Q10 thresholds cannot be increased without detailed power deposition studies for wire-induced losses to assess the risk of quench
- It was agreed, that we don't change the Q10 thresholds for the Pb run

Summary (1/2)

• Betatron losses in IR7:

- The proposal is to align the collimator and magnet master thresholds in IR7 (+DS) to 50-60 kW for crystal channeling, power deposition values are considered acceptable for collimators
- Will allow us to dynamically probe the quench level in the IR7 DS (via Monitor Factor) aim for best machine performance → strategy for Monitor Factor increase in place
- If a quench in the IR7 DS occurs, Monitor Factors will be reverted to previous settings, in order to avoid further quenches
- In case the channeling condition is lost (amorphous), the power limit is about 5 times lower
- In the unexpected case the system needs to be reverted to the standard setup (without crystals), then the master thresholds need to be changed

• BFPP losses in IR1/2/5/8:

- Measures to mitigate the risk of quenches are in place
- BLM thresholds will be aligned to the BFPP-induced BLM signals
- In addition, we will maintain reduced settings near BFPP loss location in L5 (dipole with possibly non-conform diode)
- Losses induced by wire scanner in IR4:
 - The Q10 has reduced BLM thresholds due to the risk of symmetric quenches → cannot be just increased with further power deposition studies (i.e., no 'on-the-fly' increase)
 - For the moment, the agreement was to maintain the present Q10 thresholds no explicit request for dedicated studies (which would take some time)

home.cern

Quench limit of MBs – what do we know?

Summary of quench tests Run 2+3:

Year	Туре	Particle type (energy)	Quen ch	Time profile of loss rate	Reconstructed max. energy density in MB coils	Reconstructed energy density in MB coils (10 s average)
2015	BFPP (IR5)	Pb (<mark>6.37</mark> ZTeV)	Yes	Const for 20 s	15-20 mW/cm ³	15-20 mW/cm ³
2015	Collim (IR7)	Pb (<mark>6.37</mark> ZTeV)	Yes	Rising for 12 s	20-30 mW/cm ³	13-19 mW/cm ³
2015	Collim (IR7)	p (<mark>6.5</mark> TeV)	No	Rising for 5 s	20-25 mW/cm ³ (x)	
2022	Collim (IR7)	р (<mark>6.8</mark> ТеV)	No	Rising for 50 s	14-17 mW/cm ³	12-14 mW/cm ³

(x) Peak occurred at dipole front – different quench behaviour.

- Time profile matters \rightarrow loss profile in past collimation quench tests was not constant
- Expect the steady-state quench level at 6.8 TeV to be not higher than 15 mW/cm³

