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Introduction

Let D denote data generated from a (typically unknown) probability
distribution G , where G is presumed to be the manifestation of physical
processes that we wish to understand.

To that end, we build statistical models, p(X |θ), of G , where θ denote the
model parameters. The most common use case is that only a subset of the
parameters are of interest. However, in this talk I’ll assume we are
interested in all of the parameters.

I’ll start with a pedagogical introduction to likelihood-free frequentist
inference (LF2I), which was introduced recently by Prof. Ann Lee1 and her
group at Carnegie Mellon University using as an example an ON/OFF
experiment performed at the Institut Laue Langevin in Grenoble in the
early 1980s. The method will then be illustrated with a few simple
examples.

1Likelihood-Free Frequentist Inference: Confidence Sets with Correct Conditional
Coverage Niccolò Dalmasso, Luca Masserano, David Zhao, Rafael Izbicki, Ann B. Lee,
arXiv:2107.03920v6 [stat.ML] 6 Apr 2023.
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Introduction

So what is an ON/OFF experiment?

ON/OFF Experiment

In an ON/OFF experiment, the data comprise two independent counts
D = N,M obtained under the signal plus background condition (ON) or
the background-only condition (OFF). In the simplest case, the statistical
model is

p(X ,Y |θ) = Poisson(X , µ+ ν)Poisson(Y , ν),

where X and Y are random counts.

When data D are entered into the model, we arrive at the likelihood
function

p(D|θ) = Poisson(N, µ+ ν)Poisson(M, ν).

Usually, we don’t care about ν, the mean background, but for today we’ll
pretend that we do!
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Introduction Neutron antineutron oscillations

The search for neutron-antineutron oscillations at the Institut Laue
Langevin (ILL) in Grenoble, France (1980 - 1985) is a pedagogically
perfect example of an ON/OFF experiment in particle physics.

H18 cold neutron beam: neutron flux
1.5× 109n/s, neutron temperature
∼ 1.5K (neutron speed ∼ 160m/s).
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Introduction Neutron antineutron oscillations

The CERN-Rutherford-ILL-Sussex-Padova Collaboration2 conducted the
experiment sketched below.

Field-OFF: 𝑁

Field-ON: 𝑀

2G. Fidecaro et al., ”Experimental search for neutron-antineutron transitions with
free neutrons”, Phys. Lett. B 156, 122 (1985).
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Introduction Neutron antineutron oscillations

In this experiment the following results were obtained

N = 3 field-OFF events,

M = 7 field-ON events.

For the purposes of this talk, we’ll assume that the goal is to create a
subset R(D) within the θ = µ, ν parameter space of the likelihood
function, which, in some sense, is most likely to contain the true value of θ.

By “some sense” and “most likely” we mean the following,

P(θ ∈ R(D)|θ) ≥ 1− α, ∀θ ∈ Θ, (1)

that is, the probability that θ lies within the subset R(D) is at least 1− α
for every plausible value of θ in the parameter space Θ.

Today we restrict ourselves to the frequentist meaning of the probability P.
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Introduction Neutron antineutron oscillations

Consider all the experiments3 that have been performed since the
discovery of the electron in 1897.

Let’s imagine their re-analysis using the same method to construct a set
R(D) for each experiment, and let’s choose α = 0.05. In general, the
meaning of D and θ differs from one experiment to the next.

For each experiment, we assert that the true (unknown) value of
θ ∈ R(D). Each such statement is either True or False.

Our task is to devise a method such that the fraction of true statements,
that is, the coverage probability, over the ensemble of statements is
greater than or equal to the confidence level (CL) 1− α = 0.95.

Random sets {R(D)} with this property, of which a confidence interval is
a special case, are called confidence sets.

3In principle, we need to use an infinitely large ensemble of experiments.
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Introduction Hypothesis Tests and Confidence Sets

The LF2I approach provides a method for constructing confidence sets,
R(D), which

1 does not presume the validity of Wilks’ theorem and its variants4 and,
therefore, works for finite data samples and

2 does not require knowledge of the statistical model, and, therefore,
the likelihood function.

The method

1 exploits the fact that confidence sets for all the parameters taken
together can always be constructed;

2 exploits the close relationship between classical hypothesis tests and
confidence sets, and

3 leverages the availability of high-fidelity simulators in many scientific
fields, and the power of machine learning.

4G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for
likelihood-based tests of new physics, Eur.Phys.J.C71:1554, 2011.
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Introduction Hypothesis Tests and Confidence Sets

For each hypothesis H0 : θ = θ0, we proceed as follows.

𝜆

Critical Region
𝛼

Acceptance Region
1 − 𝛼

𝐻!: 𝜃 = 𝜃!

𝑝(𝜆|𝜃!)

Choose a small probability α;

Construct a function of
(potential) observations X
called a test statistic, λ(X , θ)
with the property that large
values of λ cast doubt on the
validity of the hypothesis H0.

Compute the p-value = P(λ > λobs|θ0) = 1− C(λobs|θ0), where
λobs = λ(D, θ0) is the observed value of the test statistic, and the
cumulative distribution function is given by

C(λobs|θ0) =

∫
Y≤λobs

dY

∫
dX δ(Y − λ(X , θ0)) p(X |θ0). (2)

If the p-value < α then the test statistic has landed in the so-called
critical region in which case reject the parameter value θ0.
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Introduction Hypothesis Tests and Confidence Sets

By construction the probability to reject θ0 is α5 if H0 is true. Therefore,
the probability not to reject θ0 is 1− α.

In other words, we keep θ0 whenever the p-value ≥ α or, equivalently,
whenever C(λobs|θ) ≤ 1− α.

For a given data set D, the confidence set R(D) is constructed by
collecting together all values of θ that are kept.

Therefore, the task is to approximate either the p-value or the cumulative
distribution function, which is the basis of the LF2I method to which we
now turn.

5If the hypothesis H0 is true then the probability of falsely rejecting it is α. Rejecting
a true hypothesis is called a Type 1 error.

Harrison B. Prosper (FSU) Likelihood Free Inference 27 September, 2023 12 / 31



Likelihood Free Frequentist Inference

Outline

1 Introduction

2 Likelihood Free Frequentist Inference

3 Examples

4 Summary

Harrison B. Prosper (FSU) Likelihood Free Inference 27 September, 2023 13 / 31



Likelihood Free Frequentist Inference Approximating C(λobs|θ)

The likelihood-free frequentist inference (LF2I) approach comprises several
components, including an algorithm for approximating the p-value or the
cumulative distribution function, which is shown below.

Algorithm 1 LF2I approximation of C(λobs|θ) given a simulator F(θ)

1. Initialize training sample T← ∅
while k ∈ [1, · · ·K ] do

2. Sample θk ∼ π(θ)
3. Sample Xk ≡ X1,k , · · · ,Xn,k ∼ F(θk)
4. Compute test statistic λk ← λ(Xk , θk)
5. Compute test statistic λobs,k ← λ(D, θk)
6. Compute indicator Zk ← I(λk ≤ λobs,k)
7. Update training sample T← T ∪ {(θk ,Zk)}

end while
8. Use T to train a machine learning (ML) model, f (θ;ω), to approx-
imate C(λobs|θ), where θ are the inputs to f (θ;ω), and ω are the ML
model parameters.
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Likelihood Free Frequentist Inference Approximating C(λobs|θ)

Since Z = I(λ ≤ λobs) then, for a given θ, the probability that λ ≤ λobs is
the same as the probability that Z = 1, which, in turn, is the same as the
conditional expectation value E[Z |θ].

The ML models of interest are trained through empirical risk minimization,
that is, by minimizing an empirical risk function (aka cost function), given
by

R(ω) =
1

K

K∑
i=1

L(fi , ti ), fi ≡ f (xi ;ω), (3)

where ti are known targets associated with known inputs xi and L(f , t) is
a loss function.

In the limit of an infinite training sample the empirical risk function
becomes the risk functional R[f ],

R[f ] =

∫ [∫
L(f , t) p(t|x) dt

]
p(x) dx . (4)
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Likelihood Free Frequentist Inference Approximating C(λobs|θ)

If

the training data sample is large enough, and

the ML model has sufficient capacity (that is, it is capable of
modeling all desired functions), and

the minimizer can find a good approximation to the minimum of the
risk functional,

then, provided that p(x) > 0 ∀ x , minimizing the risk functional R[f ] yields
the important result, ∫

∂L

∂f
p(t|x) dt = 0. (5)

LF2I uses the quadratic loss L(f , t) = (f − t)2 with the targets set to
t = Z . According to the above result, this implies that the best-fit ML
model parameters ω∗ yield a trained ML model that satisfies,

f (θ;ω∗) ≈ p(Z = 1|θ) ≡ P(λ ≤ λobs|θ). (6)
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Likelihood Free Frequentist Inference Approximating C(λobs|θ)

The LF2I algorithm generates confidence sets by simply testing whether a
given point θ satisfies the condition f (θ;ω∗) ≤ 1− α.

As noted earlier, LF2I comprises several components. One of components
is an algorithm to model the coverage probability as a function of θ. In
principle, this is a marvelous way to check the quality of the approximation
f (θ;ω∗) ≈ P(λ ≤ λobs|θ).

But, unfortunately, to use the coverage probability function as a diagnostic
for the quality of f (θ;ω∗) we need to be sure that the coverage probability
function itself is well modeled!

It is these difficulties and the desire to avoid the need for building multiple
ML models that inspired the modification we recently proposed, following
a fruitful discussion I had with Ann Lee at a workshop in Aspen last year
she and I co-organized with Konstantin Matchev. The modified LF2I
algorithm is called amortized likelihood-free frequentist inference (ALFFI).
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Likelihood Free Frequentist Inference Approximating C(λobs|θ)

Algorithm 2 Amortized likelihood-free inference (ALFFI)

1. Initial training samples: X← ∅, T← ∅
while k ∈ [1, · · ·K ] do

2. Sample θk ∼ π(θ)
3. Sample Xk ≡ X1,k , · · · ,Xn,k ∼ F(θk)
4. Update training sample X← X ∪ {(θk ,Xk)}

end while
5. Produce a second data sample, Y = {(θk ,Xk)}, to serve as instances
of “observed” data by randomly shuffling the Xk relative to the θk
while k ∈ [1, · · ·K ] do

6. Compute test statistic λk ← λ(Xk , θk)
7. Compute test statistic λ′k ← λ(Yk , θk)
8. Compute indicator Zk ← I(λk ≤ λ′k)
9. Update training sample T← T ∪ {(θk , λ′k ,Zk)}

end while
10. Train an ML model, f (θ, λobs;ω), to approximate C(λobs|θ).
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Examples Example 1: Cosmological Model

The power of LF2I and ALFFI is that knowledge of the likelihood is not
needed and the method works for samples of all sizes. However, it is useful
to have simple benchmark models to validate and illustrate the method.

We first apply ALFFI to a cosmological model that is fitted to the Union
2.1 compilation of data for 580 Type 1a supernova6.

For the test statistic, we use the function

λ =
N∑
i=1

(
xi − µ(zi , θ)

σi

)2

, (7)

where xi ± σi are the measured distance moduli, µ(z , θ) the predicted
distance modulus function, and zi the measured supernovae red shifts,
which are accurately known.

6https://www.supernova.lbl.gov/
Harrison B. Prosper (FSU) Likelihood Free Inference 27 September, 2023 20 / 31



Examples Example 1: Cosmological Model

Our cosmological model is defined by the rather odd equation of state

P = −1

3
nanΩ(a), (8)

where n is a free parameter, and a(t), Ω(a), and P are the dimensionless
universal scale factor, the dimensionless energy density, and the
dimensionless pressure, respectively, and t is the time since the Big Bang.

This equation of state yields the energy density

Ω(a) = exp(an − 1) / a3. (9)

About the only virtue of this model is that it has only two parameters, the
other being the Hubble constant H0 (not to be confused with an
hypothesis), and the model can be exactly integrated.
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Examples Example 1: Cosmological Model

When the cosmological model is fitted to the Type 1a data by simply
minimizing the λλ (using, for example, iminuit), we find the following
excellent fit.
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46
µ The Union2.1 Compilation

The Supernova Cosmology Project

χ2/ndf = 567.2/578 = 0.98

phantom model

data

By the way, the model predicts that the universe will self-destruct in a Big
Rip at about 1.4 times its current age!
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Examples Example 1: Cosmological Model

We approximate P(λ ≤ λobs) using a 5-layer fully-connected feed-forward
neural network, with 20 nodes per layer, a single output, and ReLU

non-linearities. The confidence sets are shown in the figure below.
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The solid contours are computed
with ALFFI, while the dashed
contours are computed by
approximating E[Z |θ] using the
ratio HZ/H1 of two 2D
histograms, one (HZ ) in which
entries are weighted by the
indicators Z and the other (H1)
uses unit weights.
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Examples Example 1: Cosmological Model

In ALFFI, unlike LF2I, the “observed” test statistic is an input to the
neural network model. Therefore, we can directly check the coverage by
simulating ensembles of data sets at many randomly selected points within
the parameter space and explicitly counting how often the confidence sets
at each point contain that point.
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Examples Example 2: ON/OFF Model

Our second example is the neutron-antineutron oscillations search we
discussed earlier. We use the following test statistic

λ(D, θ) = −2 log

[
p(D|µ, ν)

p(D|µ̂, ν̂)

]
, (10)

where µ̂ and ν̂ are the best-fit values of the parameters. Since µ ≥ 0, we
take the estimate of the mean signal to be

µ̂ =

{
N −M if N > M
0 otherwise,

, (11)

which explicitly violates one of the regularity conditions for the validity of
Wilks’ theorem, namely, that estimates must lie within the interior of the
parameter space. For the estimate of the mean background, we take

ν̂ =

{
M if µ̂ = N −M
(M + N)/2 otherwise.

(12)
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Examples Example 2: ON/OFF Model

A similar neural network model is trained for the ON/OFF example and
yields the following confidence sets and coverage probabilities.

Confidence sets Coverage

The coverage probabilities shown in the rightmost plot at the parameter
points displayed in the middle plot are indeed bounded by the confidence
levels 1− α even for the sparse data of the Grenoble experiment.
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Examples Example 3: SIR Model

We end with an example in which the likelihood function is intractable
and, therefore, where the full power of LF2I and ALFFI is needed.

The susceptible-infected-recovered (SIR) model is applied to a classic data
set from a flu outbreak more than a century ago at an English Boarding
School. In this model, individuals in the susceptible class, S, can migrate
to the infected class, I, and from I to the recovered class, R.

The mean counts in the three classes are governed by the equations

dS

dt
= −βSI ,

dI

dt
= −αI + βSI ,

dR

dt
= αI , (13)

where θ = α, β are the model parameters.
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Examples Example 3: SIR Model

We choose a test statistic proportional to

λ(D, θ) =

√√√√ N∑
n=1

(xn − In(θ))2

In(θ)
, (14)

where xn are the observed number of infected school children on a given
day. The likelihood function is intractable because the counts are
correlated across time and the fluctuations are super-Poissonian.
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We again train a relatively simple neural
network to approximate P(λ ≤ λobs|θ)
and use it to compute the solid contours
in the figure to the left. The dashed lines
are obtained, as before, with the
histogram approximation. We see good
agreement between the two
approximations.
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Examples Example 3: SIR Model
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There is some
under-coverage, but
overall the results are
reasonable.

The examples chosen for illustration very simple.

It remains to be seen how well the method scales to large problems and
whether a way can be found to map the confidence sets to confidence
intervals for individual parameters.
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Summary

If a high-fidelity simulator is available, the LF2I approach can be used
to create confidence sets with good coverage and, in principle, exact
coverage.

A simple modification makes it possible to both construct confidence
sets and check their coverage explicitly using the same trained neural
network model.

The three simple examples illustrate the potential of likelihood-free
frequentist inference, but, as always, more work is needed.

The LF2I approach contains methods to compute confidence sets for
subsets of the parameters, but, alas, without frequentist guarantees
for small samples.

Thank you!
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