

TCLPX4 settings effect on the matching section of IR1/5

M. Sabaté-Gilarte, F. Cerutti

WP10 Energy deposition & R2E

Context

- TCLPX4 aperture needs to be modified to allocate the flat optics.
- Furthermore, it is important for PPS2 configuration in IR5.
- Study the impact of the TCLPX4 settings by looking at:
 - Peak dose on D2 and Q4 assemblies.
 - Loads on D2, Q4, TCLPX4 and TCLMB.
 - Radiation levels.
- Settings to be considered:

Half-gap	11.6 mm	14.2 mm	21.1 mm	24.7 mm	28 mm
IR1 - HC	X	X	ref		
IR5 - VC	X	X	ref	X	X

FLUKA simulations

- HL-LHC optics version 1.5 (Nov. 2019 released).
- Right side of the IP1/5.
- p-p collisions at 7 TeV.
- IR1: 250 μrad crossing angle in the horizontal plane.
- IR5:
 - +250 μrad crossing angle in the vertical plane.
 - Mix polarity up/down combination.
- Normalization factor:
 - 4000 fb⁻¹ integrated luminosity.
 - 7.5 L0 instantaneous luminosity.

IR1 Horizontal crossing

HC: peak dose distribution in D2 assembly

HC: peak dose distribution in Q4 assembly

Horizontal Crossing: dose levels

Around TCPLX4

11.6 / 14.2 mm: increased by a factor 1.2

Around Q4-assembly:

11.6 / 14.2 mm: decreased by a factor 0.6

dose profile integrated over [-20 cm < transverse < 20 cm] and [-70 cm < height < -50 cm]

Horizontal Crossing: Total power (W) for 7.5 L0

Half gap (mm)	D2	D2 Hcorr	D2 Vcorr	Q4 - CM MCBYs	Q4 - CM	TCLPX inner	TCLPX outer	TCLMB B1
11.6	24.2	0.9	0.8	3.3	3.7	303.5	288.2	13.7
Ratio wrt ref	0.9	0.5	0.5	0.6	0.8	1.3	1.8	0.5
14.2	26.7	1.05	1.04	3.6	3.9	277.8	256	15.7
Ratio wrt ref	0.9	0.6	0.7	0.7	0.8	1.2	1.6	0.5
21.1 - ref	28.3	1.8	1.5	5.3	4.8	230.1	162.4	29.1

The collimator design, including the thermomechanical studies, is based on the loads corresponding to the reference settings.

corr = corrector

CM = cold mass

IR5 Vertical crossing

VC: peak dose distribution in D2 assembly

VC-up/down

Half gap (mm)	Peak dose (MGy)			
21.1 - ref	5			
11.6	3.3			
ratio	0.7			
14.2	3.8			
ratio	0.8			
24.7	6			
ratio	1.2			
28	12			
ratio	2.4			

VC: peak dose distribution in Q4 assembly

VC-up/down

Half gap (mm)	Peak dose (MGy)			
21.1 - ref	3.2			
11.6	1			
ratio	0.3			
14.2	1.2			
ratio	0.4			
24.7	4			
ratio	1.3			
28	4.2			
ratio	1.3			

| TCLPX4 | HG=21.1 mm (ref) | HG=11.6 mm | HG=28 mm | H

VC dose levels

VC-up

Around TCPLX4:

 $24.7\,/\,28$ mm: decreased by a factor 0.7-0.8

11.6 / 14.2 mm: increased by a factor 1.3

Around Q4-assembly:

24.7 / 28 mm: increased by a factor 2.5

11.6 / 14.2 mm: decreased by a factor 0.5

Vertical crossing: Total power (W) for 7.5 Lo

Half gap (mm)	D2	D2 Hcorr	D2 Vcorr	Q4 - CM MCBYs	Q4 - CM	TCLPX inner	TCLPX outer	TCLMB B1	TCLMB B2
11.6	13.7	0.4	0.5	1.8	1.8	58.3	170	5	0.63
Ratio	0.7	0.4	0.4	0.4	0.7	1.5	2	0.1	0.6
14.2	14.6	0.4	0.6	2.2	1.8	52.6	144.7	6.1	0.79
Ratio	0.8	0.5	0.5	0.5	0.8	1.4	1.7	0.2	0.8
21.1 - ref	18.8	1	1.2	4.6	2.4	38.7	85.5	35.7	0.98
24.7	31.8	2.1	3.3	5.3	2.3	30.8	59.3	44.7	0.9
Ratio	1.7	2.2	2.7	1.2	1	0.8	0.7	1.3	0.9 !
28	54	3	4.6	5.6	2.6	23.2	37.3	51.9	0.9
Ratio	2.9	3.1	3.8	1.2	1.1	0.6	0.4	1.5	0.9

TCLPX is designed to stand the maximum ...

heat in IR1, > 200 W for a single jaw.

corr = *corrector*

CM = cold mass

M. Sabaté-Gilarte

Conclusions

The effect of bigger and smaller aperture of the TCLPX collimator was explored for HC/VC.

Peak dose in D2/Q4 assemblies:

- A reduction in the aperture of the TCLPX4 implies a decrease in the peak dose in D2 and Q4-assembly.
- A larger opening leads to a non-negligible increase in D2 (up to a factor 2) and Q4-assembly.

Total power:

- The impact of the TCLPX4 settings highly depends on the half gap and the crossing plane.
- For horizontal crossing, an aperture of 11.6 mm half-gap implies that the loads in the inner jaw of the TCLPX4 will be ~304 W, 70 W above the values considered in the design.
- In vertical crossing when opening the TCLPX4 to 28 mm half-gap, the loads in the D2, Q4 and TCLMB increase by a factor 2.9 (up to 54 W), 1.2 (5.6 W) and 1.5 (52 W) respectively.

Radiation levels:

- When opening the collimator there is a decrease by a factor ~0.8 in the surrounding of TCLPX4 and an increase by a factor 2.5 around Q4-assembly.
- When closing the collimator there is an increase by a factor ~1.3 in the surrounding of TCLPX4 and a decrease by a factor ~0.5 around Q4-assembly.

