HSF Reconstruction and Software Trigger Working Group

Towards Zero-Waste Computing with Performance
Engineering

A Practical Example from Track Reconstruction

Stephen Nicholas Swatman'?

. Ana-Lucia Varbanescu®
Wednesday, September 13th, 2023

TUniversity of Amsterdam 2CERN University of Twente

E UNIVERSITY -
OF AMSTERDAM @e-

/."ﬁ
@ PARALLEL CERN { UNIVERSITY
i Commume &) allS, oF TWENTE.

~

Introduction - Clustering

channelO

o 2 4 & 8 10 12 14
channell | , i i i i i i i

O

- Pixel detectors give deposition per pixel
- One particle may activate many pixels

6 +
- But no cluster information (let alone] E‘j
particle information) can be recorded

- Computing clusters is one of the first o L
steps in reconstruction 12l [':l

Graphic by Uchendu Nwachukwu

Introduction - Clustering

channelO

o 2 4 & 8 10 12 14
channell | , i i i i i i i

O

- Pixel detectors give deposition per pixel
- One particle may activate many pixels

6 +
- But no cluster information (let alone] E‘j
particle information) can be recorded

- Computing clusters is one of the first o L
steps in reconstruction 12l [':l

Graphic by Uchendu Nwachukwu

Introduction — Connected Component Labelling

= untitled - Paint =] E3

File Edit View Image Option: Help

- In graph theory and computer vision,
known as connected component
labelling (CCL)

- You might recognise its greatest hit:
the Microsoft Paint Fill tool

- Usually applied to graph or dense

OD/?%'\QR}:
O|Rm|~|w|e=| O[3

image data
- Vast body of knowledge on algorithms | [_.ﬁ'
across all sorts of devices llllllllllllll
I_I_ll_ll_lll_l_l_lll_

|F0r Help, click Help Topics on the Help Menu. rl_ FH él

Zero Waste Computing — CCL for Sparse Data

- CCL problems in HEP are interesting because
they are...

- Extremely sparse (~2% N.Z.)
- Across disjoint images (~2000 in ATLAS ID)

- Sparse problems are less common and there is
less work on algorithm design

- SparseCCL was developed for HEP applications at
CERN and Sorbonne University by A. Hennequin
et al. (doi:10.1109/DASIP48288.2019.9049184)

Flavour

Positioning Connection

Dense
Sparse

Graph

Implicit Implicit
Explicit Implicit
N.A. Explicit

https://doi.org/10.1109/DASIP48288.2019.9049184

Zero Waste Computing — SparseCCL for CPU

SparseCCL: Connected Components Labeling and
Analysis for sparse images

Arthur Heanequin'2, Ben Coutur

L1ps, Sor
JLPNHE, Sorbonse U
email: athusbenne

- SparseCCL runs sequentially over an image
- We'll assume that SparseCCL is efficient

pecaiing it
i s and o

and AMD P

- How can we now run this efficiently on SRR
multi-core systems?

W
experiment. Finally, in Secton IV, we cvalate this new
algorith and compare it 1 stae-of the-ar.
In compute vision, Connccted Componet labeling (CCL)

ommon and wide spread algortm. 1s pu o

1 CLASSIC ALGORITINS FOR DENSE BMAGES

1 i i, we process one comected
g component at ime. The image is scanned one time and

- In other words: where is the parallelism?

cotal ones
191 131 Recenty. new
ped fo mulicore processors many
141 101, Geus 18] [11]

b o matix algebrs
When & matix hax Juc. he clasica

by Haralick [5]. Each pixl
vy fow non-zero vale, el e, 1
deme siucture and the classical dens algoriths torn oot

ten this label
ing ol minimum

lized with 3 uniue
s propagated 1o the pixls ncight

978.1.7281.4074.2/15/$31.00 ©2015 IeeE

Zero Waste Computing — SparseCCL for CPU

SparseCCL: Connected Components Labeling and
Analysis for sparse images

- SparseCCL runs sequentially over an image
- We'll assume that SparseCCL is efficient

How can we now run this efficiently on
multi-core systems?

- In other words: where is the parallelism?

- We have parallelism between images (modules)...

141 101, Geus 18] [11]

- ..and between events!

978.1.7281.4074.2/15/$31.00 ©2015 IeeE

Zero Waste Computing — SparseCCL for GPU

- Now, how can we do clustering on graphics
programming units (GPUs)?

- Get a summer / technical / doctoral student to
implement SparseCCL in CUDA or HIP!

AMDZ1
INSTINCT

Zero Waste Computing — SparseCCL for GPU

- Now, how can we do clustering on graphics
programming units (GPUs)?

- Get a summer / technical / doctoral student to
implement SparseCCL in CUDA or HIP!

AMDZ1
INSTINCT

- It turns out this would be a doomed effort
- But we know this before we write any code

- Analyse the properties of the software...
- ..as well as the hardware...
- ..and predict how they would interact!

Performance engineering gives us the tools to reduce waste
of energy, compute time, and human resources

GPGPU Computing — Recap

[Control |
L1 che u
S
L1 c] J
c

- GPGPUs are designed to execute similar
tasks in a massively parallel fashion

- This is achieved by sharing a small
amount of control between a large
amount of compute

Contt L
J
&&&&& 5
L1 c: h _/
[Control_|
S

- This makes individual “cores” less
independent: lock-step execution!

- Beware NVIDIA marketing!

Zero Waste Computing — Hardware Differences

Differences in hardware require us to think differently about efficiency and zero-waste!

CPUs have... GPUs have...
- Complex pipelines & many ports - Large numbers of dependent “cores”
- Very large global memories - Very-high-speed shared memories
- Complex cache hierarchies; etc. - Coalesced load-store logic; etc.

...50 we must think (more) about...

- Instruction-level parallelism - Thread imbalance & divergence
- Coarse task-level parallelism - Fine task-level parallelism

- Temporal data locality; etc. - Data access strides; etc.

SparseCCL for GPU - Introduction

L1 Lache U
. . | Lache
- How do we expose parallelism in]
Control
SparseCCL for GPUs? ““““““
- Recall the design of GPUs: many small
cores that share control | L1 cache | u
Control
S

SparseCCL for GPU - Introduction

L1 Lache U
. . L1 Lache
- How do we expose parallelism in]
> ontro
SparseCCL for GPUs®
- Recall the design of GPUs: many small
cores that share control | L1 cache | IIIIIIIIIII
- Roughly two options: map each module Control IIIIIIIIIIII
onto one thread... =

SparseCCL for GPU - Per-Thread

to tl to 13 14 t5 tg T7

2 2
- Mapping each module to one thread
feels natural
2 2
4

- ..similar to how we parallelised for CPU! l
A 4 \lf \[

N g

SparseCCL for GPU - Per-Thread

to t1 to t3 T4 t5 tg T7

- Mapping each module to one thread

i 4
feels natural
- ..similar to how we parallelised for CPU!
- But modules have different hit counts! J l l
2 4
4 J« 4

- This leads to imbalance: threads
waiting (but still consuming power)

- Turns out we can also understand this

behaviour through statistical models!
4

SparseCCL for GPU - Per-Group

WO W1 W2 W3 Wqg W5 We W7 Wg W9 Wig Wil W12 W13 Wi4 W15

D = A i T T T T PSP

to t1 tp 13 tg t5 g t7 tg to tio t11 ti2 t13 tig 15

- We can also map one module onto a g I g g é | I § ¢ I s g I g

group of threads v Ll

- This is a powerful technique known as
thread refinement (opp. coarsening)

wo w1 w2 w3

SERRRRREEE

Wwo

A
A
A S

T

1

SparseCCL for GPU - Per-Group

Wo Wi W2 W3 Wq W5 W W7 Wg W9 Wio W11 W12 W13 W14 W15
NN A AP NG AN W N

to t1 tp 13 tg t5 g t7 tg to tio t11 ti2 t13 tig 15

CW [dule ont 1 gé SRS S AR S
eroup of threade oS §1§Hi1§11l11§l§

- This is a powerful technique known as
thread refinement (opp. coarsening)

wo w1 w2 w3

to ty t2 t3 t4 I5 te t7 tg to tip t1n tiz 13 tia 115
SRR agg
- Does it actually help us here? Need to Vb vy I R
parallelise work over 32/64 threads
- Puts us in the exact same problem as b

CPU: S cCLi tiall to t1 t2 t3 tg 15 te t7 tg to tio ti1 hi2 113 tis s
on . oparse IS sequential: g%géggggggégé%ég

1

GPU Clustering — Where we are now

- To recap: we have abstractly examined two implementations:

- Thread-per-module mapping suffers from huge imbalance
- Group-per-module mapping suffers from insufficient parallelism

- Both implementations would be wasteful: slow and power-inefficient
- Implementing these kernels would take dozens of person-hours

- Performance engineering from step one saves us from wasting resources: predictive
power

GPU Clustering - Finding a Way

FastSV: A Distributed-Memory Connected Component Algorithm

- Performance engineering also allows us
to define requirements which helps us
to find or design solutions

- Prescriptive power!

- In this case, requirement for shared
memory, massive parallelism, and
support for sparseness

35 1941218025

GPU Clustering - FastSV

FastSV: A Distributed-Men nponent Algorithm

- We eventually settled on a graph
algorithm: FastSV

- Reduction of sparse problem to a graph
problem
- Motivated by cost modelling
- Optimised for GPU execution using
shared memory, occupancy

optimisation, thread coarsening, load
balancing, etc.

14

GPU Clustering — Evaluation

NVIDIA Nsight Compute

- Our solution perform up to twice as
well as on an equivalent CPU

‘GPU Throughput

- Descriptive tools can now tell us what
is still bottlenecking our code

- In this case: NVIDIA Nsight Compute

- Approximately 50% utilisation of
resources (=50% waste!)

GPU Clustering — Future Work

- It remains to be seen if we will reach
the speed of light for this kernel

- Important to posit requirements and
goals in context (Amdahl’s law)

- To improve, we need to apply models,
analyses, and techniques from the PE
domain!

Location

Conclusions

- Performance engineering gives us a toolbox to predict performance, prescribe
optimisation, and describe behaviour

- Many non-functional metrics:

- Running time: more science in less time

- Power usage: more science with reduced environmental impact
- Monetary cost: more travel budget

- Implementation time: more human resources to do science

- Requires us to think carefully and from the beginning about software and hardware

