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Introduction - Clustering
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- Pixel detectors give deposition per pixel
- One particle may activate many pixels
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- But no cluster information (let alone ] E‘j
particle information) can be recorded

- Computing clusters is one of the first o L
steps in reconstruction 12l [':l
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Introduction — Connected Component Labelling
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- In graph theory and computer vision,
known as connected component
labelling (CCL)

- You might recognise its greatest hit:
the Microsoft Paint Fill tool

- Usually applied to graph or dense
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- Vast body of knowledge on algorithms | [ _.ﬁ'
across all sorts of devices llllllllllllll
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Zero Waste Computing — CCL for Sparse Data

- CCL problems in HEP are interesting because
they are...

- Extremely sparse (~2% N.Z.)
- Across disjoint images (~2000 in ATLAS ID)

- Sparse problems are less common and there is
less work on algorithm design

- SparseCCL was developed for HEP applications at
CERN and Sorbonne University by A. Hennequin
et al. (doi:10.1109/DASIP48288.2019.9049184)
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Zero Waste Computing — SparseCCL for CPU

SparseCCL: Connected Components Labeling and
Analysis for sparse images

Arthur Heanequin'2, Ben Coutur
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- SparseCCL runs sequentially over an image
- We'll assume that SparseCCL is efficient
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Zero Waste Computing — SparseCCL for CPU

SparseCCL: Connected Components Labeling and
Analysis for sparse images

- SparseCCL runs sequentially over an image
- We'll assume that SparseCCL is efficient

How can we now run this efficiently on
multi-core systems?

- In other words: where is the parallelism?

- We have parallelism between images (modules)...

141 101, Geus 18] [11]

- ..and between events!
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Zero Waste Computing — SparseCCL for GPU

- Now, how can we do clustering on graphics
programming units (GPUs)?

- Get a summer / technical / doctoral student to
implement SparseCCL in CUDA or HIP!

AMDZ1
INSTINCT




Zero Waste Computing — SparseCCL for GPU

- Now, how can we do clustering on graphics
programming units (GPUs)?

- Get a summer / technical / doctoral student to
implement SparseCCL in CUDA or HIP!
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- It turns out this would be a doomed effort
- But we know this before we write any code

- Analyse the properties of the software...
- ..as well as the hardware...
- ..and predict how they would interact!




Performance engineering gives us the tools to reduce waste
of energy, compute time, and human resources



GPGPU Computing — Recap
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- GPGPUs are designed to execute similar
tasks in a massively parallel fashion

- This is achieved by sharing a small
amount of control between a large
amount of compute
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- This makes individual “cores” less
independent: lock-step execution!

- Beware NVIDIA marketing!



Zero Waste Computing — Hardware Differences

Differences in hardware require us to think differently about efficiency and zero-waste!

CPUs have... GPUs have...
- Complex pipelines & many ports - Large numbers of dependent “cores”
- Very large global memories - Very-high-speed shared memories
- Complex cache hierarchies; etc. - Coalesced load-store logic; etc.

...50 we must think (more) about...

- Instruction-level parallelism - Thread imbalance & divergence
- Coarse task-level parallelism - Fine task-level parallelism

- Temporal data locality; etc. - Data access strides; etc.



SparseCCL for GPU - Introduction
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- Recall the design of GPUs: many small
cores that share control | L1 cache | u
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SparseCCL for GPU - Introduction

L1 Lache U
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- How do we expose parallelism in ]
> ontro
SparseCCL for GPUs®
- Recall the design of GPUs: many small
cores that share control | L1 cache | IIIIIIIIIII
- Roughly two options: map each module Control IIIIIIIIIIII
onto one thread... =



SparseCCL for GPU - Per-Thread
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- Mapping each module to one thread
feels natural
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- ..similar to how we parallelised for CPU! l
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SparseCCL for GPU - Per-Thread

to t1 to t3 T4 t5 tg T7

- Mapping each module to one thread

i 4
feels natural
- ..similar to how we parallelised for CPU!
- But modules have different hit counts! J l l
2 4
4 J« 4

- This leads to imbalance: threads
waiting (but still consuming power)

- Turns out we can also understand this

behaviour through statistical models!
4



SparseCCL for GPU - Per-Group
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SparseCCL for GPU - Per-Group
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- This is a powerful technique known as
thread refinement (opp. coarsening)
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GPU Clustering — Where we are now

- To recap: we have abstractly examined two implementations:

- Thread-per-module mapping suffers from huge imbalance
- Group-per-module mapping suffers from insufficient parallelism

- Both implementations would be wasteful: slow and power-inefficient
- Implementing these kernels would take dozens of person-hours

- Performance engineering from step one saves us from wasting resources: predictive
power



GPU Clustering - Finding a Way

FastSV: A Distributed-Memory Connected Component Algorithm

- Performance engineering also allows us
to define requirements which helps us
to find or design solutions

- Prescriptive power!

- In this case, requirement for shared
memory, massive parallelism, and
support for sparseness
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GPU Clustering - FastSV

FastSV: A Distributed-Men nponent Algorithm

- We eventually settled on a graph
algorithm: FastSV

- Reduction of sparse problem to a graph
problem
- Motivated by cost modelling
- Optimised for GPU execution using
shared memory, occupancy

optimisation, thread coarsening, load
balancing, etc.
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GPU Clustering — Evaluation

NVIDIA Nsight Compute

- Our solution perform up to twice as
well as on an equivalent CPU

‘GPU Throughput

- Descriptive tools can now tell us what
is still bottlenecking our code

- In this case: NVIDIA Nsight Compute

- Approximately 50% utilisation of
resources (=50% waste!)



GPU Clustering — Future Work

- It remains to be seen if we will reach
the speed of light for this kernel

- Important to posit requirements and
goals in context (Amdahl’s law)

- To improve, we need to apply models,
analyses, and techniques from the PE
domain!

Location




Conclusions

- Performance engineering gives us a toolbox to predict performance, prescribe
optimisation, and describe behaviour

- Many non-functional metrics:

- Running time: more science in less time

- Power usage: more science with reduced environmental impact
- Monetary cost: more travel budget

- Implementation time: more human resources to do science

- Requires us to think carefully and from the beginning about software and hardware



