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Introduction – Clustering

• Pixel detectors give deposition per pixel
• One particle may activate many pixels
• But no cluster information (let alone
particle information) can be recorded

• Computing clusters is one of the first
steps in reconstruction
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Introduction – Connected Component Labelling

• In graph theory and computer vision,
known as connected component
labelling (CCL)
• You might recognise its greatest hit:
the Microsoft Paint Fill tool

• Usually applied to graph or dense
image data

• Vast body of knowledge on algorithms
across all sorts of devices
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Zero Waste Computing – CCL for Sparse Data

• CCL problems in HEP are interesting because
they are...
• Extremely sparse (~2% N.Z.)
• Across disjoint images (~2000 in ATLAS ID)

• Sparse problems are less common and there is
less work on algorithm design

• SparseCCL was developed for HEP applications at
CERN and Sorbonne University by A. Hennequin
et al. (doi:10.1109/DASIP48288.2019.9049184)

Flavour Positioning Connection

Dense Implicit Implicit

Sparse Explicit Implicit

Graph N.A. Explicit
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Zero Waste Computing – SparseCCL for CPU

• SparseCCL runs sequentially over an image
• We’ll assume that SparseCCL is efficient

• How can we now run this efficiently on
multi-core systems?
• In other words: where is the parallelism?

• We have parallelism between images (modules)...
• ...and between events!
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Zero Waste Computing – SparseCCL for GPU

• Now, how can we do clustering on graphics
programming units (GPUs)?

• Get a summer / technical / doctoral student to
implement SparseCCL in CUDA or HIP!

• It turns out this would be a doomed effort
• But we know this before we write any code

• Analyse the properties of the software...
• ...as well as the hardware...
• ...and predict how they would interact!
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Performance engineering gives us the tools to reduce waste
of energy, compute time, and human resources
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GPGPU Computing – Recap

• GPGPUs are designed to execute similar
tasks in a massively parallel fashion

• This is achieved by sharing a small
amount of control between a large
amount of compute

• This makes individual “cores” less
independent: lock-step execution!

• Beware NVIDIA marketing!
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Zero Waste Computing – Hardware Differences

Differences in hardware require us to think differently about efficiency and zero-waste!

CPUs have...
• Complex pipelines & many ports
• Very large global memories
• Complex cache hierarchies; etc.

GPUs have...
• Large numbers of dependent “cores”
• Very-high-speed shared memories
• Coalesced load-store logic; etc.

...so we must think (more) about...

• Instruction-level parallelism
• Coarse task-level parallelism
• Temporal data locality; etc.

• Thread imbalance & divergence
• Fine task-level parallelism
• Data access strides; etc.
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SparseCCL for GPU – Introduction

• How do we expose parallelism in
SparseCCL for GPUs?

• Recall the design of GPUs: many small
cores that share control

• Roughly two options: map each module
onto one thread...

• ...or onto one thread group
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SparseCCL for GPU – Per-Thread

• Mapping each module to one thread
feels natural

• ...similar to how we parallelised for CPU!

• But modules have different hit counts!
• This leads to imbalance: threads
waiting (but still consuming power)

• Turns out we can also understand this
behaviour through statistical models!
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SparseCCL for GPU – Per-Group

• We can also map one module onto a
group of threads

• This is a powerful technique known as
thread refinement (opp. coarsening)

• Does it actually help us here? Need to
parallelise work over 32/64 threads

• Puts us in the exact same problem as
on CPU: SparseCCL is sequential!
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GPU Clustering – Where we are now

• To recap: we have abstractly examined two implementations:
• Thread-per-module mapping suffers from huge imbalance
• Group-per-module mapping suffers from insufficient parallelism

• Both implementations would be wasteful: slow and power-inefficient
• Implementing these kernels would take dozens of person-hours
• Performance engineering from step one saves us from wasting resources: predictive
power
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GPU Clustering – Finding a Way

• Performance engineering also allows us
to define requirements which helps us
to find or design solutions

• Prescriptive power!
• In this case, requirement for shared
memory, massive parallelism, and
support for sparseness
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GPU Clustering – FastSV

• We eventually settled on a graph
algorithm: FastSV

• Reduction of sparse problem to a graph
problem
• Motivated by cost modelling

• Optimised for GPU execution using
shared memory, occupancy
optimisation, thread coarsening, load
balancing, etc.
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GPU Clustering – Evaluation

• Our solution perform up to twice as
well as on an equivalent CPU

• Descriptive tools can now tell us what
is still bottlenecking our code
• In this case: NVIDIA Nsight Compute

• Approximately 50% utilisation of
resources (=50% waste!)
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GPU Clustering – Future Work

• It remains to be seen if we will reach
the speed of light for this kernel

• Important to posit requirements and
goals in context (Amdahl’s law)

• To improve, we need to apply models,
analyses, and techniques from the PE
domain!
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Conclusions

• Performance engineering gives us a toolbox to predict performance, prescribe
optimisation, and describe behaviour

• Many non-functional metrics:
• Running time: more science in less time
• Power usage: more science with reduced environmental impact
• Monetary cost: more travel budget
• Implementation time: more human resources to do science

• Requires us to think carefully and from the beginning about software and hardware
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