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▷ Why are there three families?

▷ Why do fermions have so different masses?

▷ Why is quark mixing so small while neutrino 

mixing is large?
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New Physics Flavor puzzle
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[European Strategy for Particle Physics, 19]
   Aloni+Dery+Gavela+Nir

Hatched bars: MFV
Darker colors: midterm prospects



➔  Classical global symmetry of the d=4 Lagrangian for 
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➔ SM Yukawas are the only source of flavor violation both in SM and BSM
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Minimal Flavor Violation
[Georgi+ S. Chivukula]
[Hall, Randall]
[D’Ambrosio+Isidori+Giudice+ Strumia]
[Cirigliano+ Grinstein+Wise]
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Minimal Flavor Violation

MFV symmetry principle: All higher dimensional 
operators built from SM fields and the Yukawa 

spurions are formally invariant under the flavor group 
(and CP).
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Minimal Flavor Violation: issues

Usually Yu,d are treated 
as order parameters

➔ Why

➔ Top Yukawa

➔ In 2HDM Yd can also be large 



➔ Let’s take MFV seriously

➔ Only symmetry principle, no extra assumptions
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Pure Minimal Flavor Violation 

HILBERT SERIES
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Hilbert series II (for invariants)
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Hilbert series II (for invariants)
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➔ Naively:

 

➔ Redundancy (syzygy):

➔ True HS: 
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Hilbert series: primary and sec. invariants
➔  
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➔
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➔ Secondary only arises linearly since: 

Hironaka decomposition:
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How to compute Hilbert series?

➔ Character:

 

➔ Character orthogonality: 

Molien formula to compute HS



➔ Supersymmetric gauge theories , general supersymmetric EFTs 

➔ SMEFT, SMEFT with gravity

➔ QCD Chiral Lagrangian, Higgs EFT, NRQED and NRQCD 

➔ EFTs for axion-like particles

➔ Primary observables at colliders

➔ Flavor invariants
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Applications of Hilbert Series
[Benvenuti et al, 07]
[Feng et al, 07]
[Gray et al, 08]
[Delgado et al, 23]

[Lehman et al, 15]
[Henning, et al, 15]
[Lehman et al, 16]
[Henning, et al, 17] 
[Marinissen et al, 20] 
[Kondo, et al, 23] 
[Ruhdorfer et al, 19] 

[Grojean et al, 23]

[Graf et al, 21]
[Graf et al, 22]
[Sun, et al, 22]
[Kobach, et al, 17]
[Kobach, et al, 18]

[Chang, et al, 22]

[Jenkins+Manohar, 09]
[Hanany et al, 10]



➔ Group: 

➔ Building blocks:  

➔ Hilbert series:
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Hilbert Series for flavor invariants
[Jenkins+Manohar, 09]
[Hanany et al, 10]
[Broer, 94]



➔ Group: 

➔ Building blocks:  

➔ Hilbert series:

➔ Properties

◆ 10 prim. inv. = 10 phys. param.
◆ Polynomial invariants form a ring
◆ Positive coefs. in numerator
◆ Palindromic numerator
◆ Hironaka decomposition 
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Hilbert Series for flavor invariants
[Jenkins+Manohar, 09]
[Hanany et al, 10]
[Broer, 94]

10 Primary invariants 1 Secondary invariant



➔ Hilbert Series can also count rep-R covariants 

39

Extension: Hilbert series for covariants



➔ Hilbert Series can also count rep-R covariants 

40

Extension: Hilbert series for covariants



➔ Group: 

➔ Building blocks:

➔ Goal representation:   

➔ Hilbert series:
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Hilbert series for covariants: example



➔ Rep-R covariants form a module over the ring of invariants

 

➔ Negative coefficients arise in the numerator => redundancies

➔ The denominator corresponds to the primary invariants
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Hilbert series for covariants: Properties



➔ Rep-R covariants form a module over the ring of invariants

 

➔ Negative coefficients arise in the numerator => redundancies

➔ The denominator corresponds to the primary invariants

➔ Generating set: Every covariant is a linear combination of them

➔ Linear independence

➔ Basis is not guaranteed to exist. If it does, the module is free.
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Hilbert series for covariants: Properties



➔

➔ HS:

➔ Generating set:

 

➔ Not linearly independent, there is a redundancy O(q4)
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Hilbert series for covariants: example
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Hilbert series for covariants: Rank
➔ Rank: “Maximal number of linearly independent vectors”

➔ Computation:
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Hilbert series for covariants: Rank
➔ Rank: “Maximal number of linearly independent vectors”

➔ Computation:

 

➔ Bound on the rank:

➔ Rank saturation:

➔ Theorem by [Brion, 93]

One can build the most 
general rep-R covariant!
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Hilbert series for covariants: Applications
➔ OPE (Operator Product Expansion)

➔ Counting form factors

➔ Spurion analysis → e.g. Minimal Flavor Violation



➔ Let’s take MFV seriously

➔ Only symmetry principle, no extra assumptions

 

➔ Are there really infinite textures?

➔ If not, how many?

➔ Are there assumption independent correlations among 

flavor observables?
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Pure Minimal Flavor Violation 

HILBERT SERIES
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Hilbert series for all d=6 MFV covariants



➔ Reproduced with traditional methods
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Hilbert series (8,1,1)

Cayley-Hamilton Theorem:

[Mercolli+Smith, 09]



➔ Reproduced with traditional methods

➔ No factor (1+q12) in the numerator:

 

➔ Generating set is not linearly independent
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Hilbert series (8,1,1)

Cayley-Hamilton Theorem:

[Mercolli+Smith, 09]



➔ Can be understood from H(8,1,1)(q) and H(1,1,1)(q)
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Hilbert series (1,8,1)
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Hilbert series (1,8,1)



➔ Can be understood from H(8,1,1)(q) and H(1,1,1)(q)

 

 

➔ But there are 2 redundancies:
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Hilbert series (1,8,1)
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Hilbert series for 
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Hilbert series for all d=6 MFV covariants
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Hilbert series for all d=6 MFV covariants
➔ Finitely generated (as for any reductive G)

➔ Denominator → primary invariants

➔ Numerator with negative coef. → not free module

◆ Positive terms → generating set

◆ Negative terms → redundancies (no basis)

◆ No common factor (1+q12)

➔  Rank saturates for all MFV representations

[Hochster+Roberts, 74]
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Rank saturation for MFV 
➔  Rank saturates for all MFV representations
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Rank saturation for MFV 
➔  Rank saturates for all MFV representations

 

➔ Out of Yu and  Yd We can build as many rep-R covariants as dimension of the 

representation 

➔

The MFV symmetry principle does not restrict the EFT

Note: It is not obvious. This does not hold for smaller number of building blocks 
(e.g. only Yu).
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Quo vadis MFV? 
➔  Still is a good guiding principle organizing different contributions

➔  “Physics lies in the extra assumptions”

◆ Yu,d as order parameters

◆ Only Yd as order parameter

◆ Only Yu as order parameter

Expanding a order k, the Hilbert series 
tells you how many structures there are.
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Quo vadis MFV? 
➔  Still is a good guiding principle organizing different contributions

➔  “Physics lies in the extra assumptions”

◆ Yu,d as order parameters

◆ Only Yd as order parameter

◆ Only Yu as order parameter

◆ One operator at a time: ratios of different observables                  may be able to 

distinguish among the covariants of the generating set. Currently exploring the 

pheno.

➔ No assumption. In terms of finding an origin of flavor it may be useful to use these 

generating sets as a parametrization of any flavor operator.

Expanding a order k, the Hilbert series 
tells you how many structures there are.
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Conclusions
➔ Hilbert series are really useful tools to count not only invariants but also covariants.

➔ The set of rep-R covariants form a module over the ring of invariants (finitely generated…)

➔ Rank saturation

➔ Application to MFV: we computed all HS for d=6 MFV SMEFT

➔ The rank of all of the reps saturates →

➔ Physics lies on the extra assumptions (not the MFV symmetry principle).

➔ Outlook: alternative MFV EFTs, other spurion analysis, OPEs, form factors, amplitudes…
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Thank you



Back up slides
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➔  

 

 

➔ At dimension d=6
[Buchmuller+Wyler, 86]
[Grzadkowski et al, 10]
[Alonso et al, 13]
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SMEFT

Simplifying flavor 
assumption?


