The Norwegian ALICE Program - Instrumentation

Jørgen Lien (USN) on behalf of ALICE Norway, NorCC 2024 Workshop

Forward Calorimeter

Aim:

Exploring non-linear QCD in regime of saturated gluons at low Bjorken-x and constrain nPDFs

Method:

Forward Calorimeter 7m from the interaction point in ALICE

Electromagnetic Calorimeter Highly granular Si-W layers

- 18 Si pads layers lower granularity
- 2 MAPS pixels layers higher granularity

Hadronic

Scintillating fibers embedded in Cu tubes \sim 7t of tubes and 200km of fiber

FoCal slides by Tea Bodova

Forward Calorimeter – frontend and readout

3888 ALPIDE sensors!

module 22 in total

Forward Calorimeter – pixels – FEE layers

ALPIDE modes:

One full pixel layer and the Cone of the Cone full pixel module-layer

ALPIDEs (both Inner and Outer Barrel modes!) ultrasonically welded by the SpTAB technique (Single-point Tape Automated Bonding) to aluminium-polyimide dielectrics into long multi-chip strings.

Forward Calorimeter – pixels – readout

Readout architecture based on current ITS2. Main differences:

10Gbps transceiver - lpGBT instead of GBTx 10Gbps optical link - VL+ instead of VL Bigger main FPGA - KU085 instead of KU060 New auxiliary FPGA - IGLOO2 instead of ProASIC3 New flash for reprogramming Handles Inner & Outer Barrel modes simultaneously Expected data throughput \sim 18 Gbps

Radiation mitigation techniques for SEUs remain the same - TMR and scrubbing

Power distribution

Radiation hardened DCDC bPOL48V on the Power Board.

LDOs on the detector (on Transition Card) to compensate for voltage drop and provide stable power to ALPIDEs.

Cavern

Forward Calorimeter – ALICE Norway

Shared responsibility in FoCal

Pixel layers – Bergen, USN Pixel readout – Bergen Integration – Bergen O2 – Oslo Simulations – Oslo, HVL

Forward Calorimeter – Bergen

- Pixel layers $\sqrt{9}$ -chip prototype test and verification
	- $\sqrt{15}$ -chip prototype design
	- \Box 15-chip prototype production, test and verification (Q4 2024)
	- ⃞ Testing station for production (Q4 2024 hardware already produced, software and

firmware update ongoing)

- Pixel readout \vee Readout Unit conceptual design
	- ✓ Power Board conceptual design
	- \Box PCB designs schematics and layout (Q1 2025)
	- \Box PCB production and assembly (Q2 2025)
	- \Box First iteration of test firmware for Readout Unit (Q2 2025)
	- \Box First iteration of test software for Readout Unit (Q2 2025)

General \Box Full pixel layer and readout chain and power distribution for verification (Q1 2026) \Box Finished mass production of pixel layer, readout chain and power distribution (O4 2026)

Inner Tracking System 3 (ITS3)

- **Detector Overview**
	- Wafer-scale sensor ASICs
	- Fabricated with stitching
	- All electrical signals and power routed on -chip
	- Ultra -thin and bendable: 50 µm
	- 266 mm (Z) x variable width* (rφ)
	- CMOS MAPS
		- 65 nm technology
	- Open-cell carbon foam spacers
- Key benefits
	- Extremely lightweight
		- Material budget: 0.35% $X_0 =$ > 0.05% X_0
	- Uniformly distributed material
	- Closer to interaction point
		- Beam pipe radius: 18.2 mm => 16 mm
		- Radial position: 24 mm => 18 mm

MOSAIX Test System

Purpose:

- Testing of MOSAIX chips out of fabrication
	- Planning to receive prototype in February-March
- Testing of all functionality and configurations

How:

- FPGA SoC solution
- DATA Processing module (IpGBT interface)
- Contol and Slow-Control module
- IPBuss interface to modules

Test system tested by MOSAIX model:

- Why: Testing the test system
- How: Emulating data input to the TRU (Top Readout Unit) in FW

MOSAIX TEST SYSTEM

ALICE detector technology activities at UiO

Emilie H. Solheim, PhD student (2021–2025): **FoCal**

Detector performance analysis (MC simulations, test beam)

Figure 9. GEANT4 simulation of the FoCal-E and FoCal-H (second version) prototype detectors for a shower created by a 100 GeV electron (left) and pion (right). The incident particle, which enters the detector from the left, is not shown.

FoCal-H oCal-E Pads ers size -6.5×6.5 cm ngth ~110 cm with CAEN DT5203

Figure 26. Longitudinal shower profiles for 20-300 GeV electrons compared to GEANT4 simulations and fitted with a Γ -distribution.

Figure 11. Picture of the full FoCal test beam setup used during the fall 2022 and 2023 campaigns. The FoCal-E consisted out of 18 pad layers, and 2 pixel layers (shown are pCT-based layers but also HIC-based ivers were used). The second prototype for FoCal-H was used.

Christina Tsolanta, PhD student (2023-2026): **ITS3** Characterization & test beam analysis of MAPS (baby-MOSS)

baby-MOSS setup @UiO

ALICE₃

 $z(m)$

Next generation compact experiment for LHC Run 5 and beyond

• 60 m² low-mass all-silicon tracker fully made of MAPS

 $n = -2.0$

march ff

- Retractable vertex detector for unprecedented pointing resolution
- Large acceptance: $-4 < \eta < 4$
- Excellent PID capabilities thanks to TOF and RICH detectors
- Superconducting magnet system

610

- Continuous readout and online data processing to access rare signals
- Target interaction rates x2 in Pb-Pb and x50 in pp (24 MHz) wrt Run 3 & 4

- **Scoping Document in preparation** ٠
- Specific **R&D starting up** \bullet

ALICE 3 sensor specification estimates https://arxiv.org/pdf/2211.02491.pdf

Need significant improvement in:

- Power-performance ratio, not only in front end, but also on and off chip data transmission, and architecture
- Radiation tolerance for inner layers

=> Observing convergence in sensor development targets, mostly common in the short term for different HEP applications, with longer term incremental R&D (L. Musa https://indico.cern.ch/event/994685/contributions/4181740/attachments/2193327/3707745/MUSA_ECFA_IS_2021FEB.pdf) see also D. Contardo

ALICE 3 Vertex Detector

3 barrel layers of ultra-thin, curved, wafer-scale MAPS

- . Retractable structure inside the beam pipe secondary vacuum
- First detection layer at 5 mm from the interaction point
- Completed by 2 x 3 end-cap disks for high |n| coverage

ALICE 3 Vertex Detector

3 barrel layers of ultra-thin, curved, wafer-scale MAPS

- Retractable structure inside the beam pipe secondary vacuum
- First detection layer at 5 mm from the interaction point
- Completed by 2 x 3 end-cap disks for high |n| coverage

ALICE 3 Vertex Detector

3 barrel layers of ultra-thin, curved, wafer-scale MAPS

- Retractable structure inside the beam pipe secondary vacuum
- . First detection layer at 5 mm from the interaction point
- Completed by 2 x 3 end-cap disks for high |n| coverage

- Unprecedented spatial resolution: 2.5 µm
- Extremely low **material budget: 0.1%** X_0 /layer
- \cdot Hit rate: up to 94 MHz cm⁻²
- · Main R&D challenges:
	- Radiation hardness
		- \cdot 10¹⁶ 1MeV n_{eg} cm⁻² + 300 Mrad (LOI values)
	- In-vacuum mechanics and cooling
	- 10 µm pixel pitch
	- Data and power distribution

- ALICE3 (and ITS3):
	- Die to die, and die to wafer connections connecting the analog pixels to power distribution , DC-DC converters, digital processing layers and ….
	- Organized as DRD (Detector R&D)
		- DRD 3-WG7 Experiment oriented. Sensor interconnection techniques
		- DRD 7.2b Integration of RISC-V System-On-Chip and/or FPGA on detector
		- DRD 7.6b Development of fundamental integration technologies (2D, 2.5D and 3D)
	- USN capabilities (see next 4 slides)

Packaging technology Example CMOS/ROIC Thermal Anti-reflective Coating **@USN MEMS** IR transmissive cap Microbolometers Getter Vacuum MBA Bonding $-$ frame Wafer-level Packaging **ROIC**

- Encapsulation of MEMS sensors
- Interconnection technologies for MEMS and electronics

• System-integration and encapsulation for medical devices

Bioelectronic interfaces Sensor implanted in the heart muscle

Bonded dies on the wafer with cap deflection

• Packaging technologies for demanding applications

University of South-Eastern Norway Packaging slides by Hoang Vu Nguyen, USN

IR Optics

Bonding technology example: SLID (intermetallic bonding)

Interconnection and die-attach for high temperatures

- Processing at 250-300 °C
- Bond solid to 500-700 °C

Thin -layer bonding (~10 µm)

- Hermetic sealing
- MEMS microbolometers
- Getter activation possible

Fine -pitch possible (few µm)

2.5D –3D integration compatible

Low -temperature SLID (In –Bi alloys and similar)

- Processing at 90-120 °C
- Bond solid to 271 °C or higher

Where are we now:

- Cu–Sn: Hermetic sealing for IR cameras
- Au–Sn:
	- ➢ Power electronics
	- ➢ Down-hole (oil well) instrumentation
	- ➢ Compatible with thermal cycling of CTE mismatched die/ substrate
	- ➢ Lamination of ultrasound transducers
- Ni-Sn: Potential for extreme high-temperature stability
- Au –Ge: Thermoelectric generators
- Au-In: Demonstrated high-temperature stability
- In –Bi based:
	- ➢ Extreme low -temperature bonding
	- ➢ Compatible with ultrasound transducers lamination
- Wafer -level and die -level implementation

Way forward:

- Further work on industrial implementation
- Low-temperature SLID
	- ➢ Process optimalization and fundamental understanding
	- ➢ New material systems (Cu –Sn –Bi and others)

Interconnection Technologies based on Metal-coated Polymer Spheres

Motivation

Electrical interconnections for demanding applications Improved mechanical reliability Fine-pitch capability

Bonding multiple chips with high-density interconnects to a substrate using ACA

 \leftarrow Underfi **ASIC** with bump Double-sided assembly

Flex-to-flex using ACA

using ACA

Interconnect based on a single MPS

Assembly for thousands of ultrasonic transducer elements using ACA, ICA

Where are we now:

- \Box Demonstrate interconnects with improved ductility, reduced induced tress, improved impact strength, and hance mechanical reliability
- \Box Know-how: high-density interconnects; fine-pitch (<200 μ m) to ultra finepitch capability (< 100 μ m); bonding dies from a few mm² to >100 mm², from 700 µm to 50 µm thickness
- \Box Applications: medical ultrasound probes, electronics in ammunition, display

Way forward:

- ❑ Further work on industrial implementation
- \Box Demonstrate feasibility of the technologies in new applications
- ❑ Solutions for low-temperature, low-pressure, ultra-fine pitch interconnections

Towards Heterogeneous Integration

- MEMS-on-CMOS
- Chiplets integration
- 2.5D–3D integration

University of

South-Eastern Norway

- Assembly of small-sized, largesized, ultrathin dies
- Chip-scale package, chip-towafer, wafer-level integration

ALICE Upgrades and FCC-ee common challenges

• The ALICE silicon upgrades planned for LHC LS3 and LS4 and the FCC-ee vertex and tracker detectors are targeting similar performance

* = being revised

ALICE Upgrades and FCC-ee common challenges

• The ALICE silicon upgrades planned for LHC LS3 and LS4 and the FCC-ee vertex and tracker detectors are targeting similar performance

Can the R&D for ITS3 and ALICE 3 serve as a stepping stone for FCC-ee vertex and tracker detectors?

Tracker⁵⁾

Desirable to enhance physics reach R&D needs being met

From Roadmap to DRD7

DRDTs to WPs and Projects

• Seen a rich and interesting R&D program that addresses all Detector R&D Themes identified in the ECFA Detector R&D Roadmap

Summary

- ALICE Norway contributes to many aspects of the ALICE Collaboration programme, including core detector development, software and computing
- Strong involvement in the ongoing R&D for the LS3 upgrade:
	- FoCal
	- ITS3
- Aim at continuing working within ALICE beyond Run4 and be involved in the ALICE3 project
- Involved in DRDs

Backup

WorkPackages & Projects

High-Level Overview

• For each project: Milestones and deliverables defined - currently 2024 - 2026, with perspectives beyond for most projects

• Summary table for each project in the appendix of this presentation

Project 7.2a (e-FPGA) postponed, pending consolidation of resources

WorkPackages & Projects

High-Level Overview

- For each project: Milestones and deliverables defined currently 2024 2026, with perspectives beyond for most projects
- Summary table for each project in the appendix of this presentation