First simulation approach for Ar & Xe electroluminescence in the NIR region

C. A. B. Oliveira¹ A. L. Ferreira¹ S. Biagi² R. Veenhof³ J. F. C. A. Veloso¹

¹I3N, Physics Department, University of Aveiro, Aveiro, Portugal

²Physics Department, University of Liverpool, Liverpool, UK

³CERN, Geneva, Switzerland

13/04/2010 - 7th RD51 Collaboration Meeting

▲□ > ▲@ > ▲ 분 > ▲ 분 > 분 분 의원 이익() 1/11

Purpose of the work

- Investigate Ar & Xe scintillation in the Near Infra Red (NIR) region
- Applications of noble gas NIR light:
 - Primary scintillation:

Neutrino-nucleous scatering detectors

Directional solar neutrino detection

High energy calorimetry

Electroluminescence:

Gaseous & dual phase Ar / Xe detectors

Purpose of the work

- A. Buzulutskov et al recently measured the absolute electroluminescence yield of pure Ar in the NIR region (RD51-Note-2011-002).
- Can garfield++ (& Magboltz 8.9.3) reproduce those results?

Atomic and molecular transitions NIR & VUV

• 4s (75-90%) \rightarrow excimers \rightarrow VUV γ

- 4p (5-13%) → decay to 4s (NIR γ)→ excimers → VUV γ (1 4p state = 1 NIR γ + 1 VUV γ)
- ▶ higher levels (1-12%) → decay to 4p (J.W. Keto, J.Chem.Phys. 74 (81) 6188) → decay to 4s (NIR γ) → excimers → VUV γ (1 higher state = 1 NIR γ + 1 VUV γ)

VUV yield Uniform field

- 1 excited state (in any level) \rightarrow 1 VUV γ
- Good agreement with experimental data (Ar & Xe)
- Toolkit validated

Submitted to Phys. Lett. B

∃ ► < ∃ ►</p>

[6] Monte Carlo - F. P. Santos et al., J. Phys. D. Appl. Phys. 27 (1994) 42.
 [9] Experimental - C.M.B. Monteiro et al., J. Instrum. 2 (2007) P05001
 [10] Experimental - C.M.B. Monteiro et al., Phys. Lett. B 668 (2008) 167

Atomic transitions from 4p states $_{\ensuremath{\mathsf{NIR}}}$

P. Lindblom, Nuc. Instrum. Methods A 268 (1988) 204

Dipole-allowed transitions (NIST Atomic Spectra Database)

Atomic transitions from 4p states

NIST				P. Lindblom	
Source	Final	$\Delta E[eV]$	λ [nm]	$\lambda_{agree}[nm]$	$\lambda_{\text{don't}_agree}[nm]$
4p'[1/2] ^o ₁	4s[3/2] ₂ ^o	1.7795025	696.7	696.5	
4p'[3/2] ₂	4s[3/2] ₂ ^o	1.7538723	706.9		727.3
4p'[1/2] ₀	4s'[1/2] ₁	1.6518156	750.6	751.5	
4p[3/2] ₂	4s[3/2] ₂ ^o	1.6234232	763.7	763.5	
4p'[3/2] ^o ₁	4s'[1/2] ₀	1.5594786	795.0	794.8	
4p[3/2] ₂	4s[3/2] ^o ₁	1.5481849	800.8		738.4
4p[5/2] ₂	4s[3/2] ₂ ^o	1.546518	801.7	801.5	
4p[3/2] ^o ₁	4s[3/2] ^o ₁	1.529551	810.6		772.4
4p[5/2] ₃	4s[3/2] ₂	1.5273612	811.8	811.5	
4p[1/2] ^o ₁	4s[3/2] ₂ ^o	1.3586608	912.5		826.5
4p[1/2] ^o ₁	4s[3/2] ^o ₁	1.2834225	966.04		842.4

NIST - used in the simulation model

P. Lindblom - used in the experimental measurement by Buzulutskov et al

Population of excited states

Ar @ 0.6 atm 163 K | 2 mm of drift

8/11

NIR yield Ar - Uniform field

- Fair agreement between experiment & simulation for *E/N* < 16 Td
- Differences for
 E/N > 16 Td being
 analysed
- $\alpha_{ion} > 0.01 \text{ ions cm}^{-1}$ for E/N > 13 Td

9/11

NIR yield Xe - Uniform field

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日</td>

- The toolkit has been validated for VUV Electroluminecence in pure noble gases.
- Electroluminescence in the NIR region can in principle be simulated.
- Fair agreement between experiment & simulation in Ar for *E*/*N* < 16 Td
- The decay cascade from levels higher than 4p is being studied in order to implement a more realistic model

Thank you!!

DRIM - Radiation Detection & Medical Imaging