WG2 session summary

M. Chefdeville RD51 collaboration meeting 13-15 April 2011, CERN

Some variety in topics

09:00	Overview of NIKHEF activities	HARTJES, Frederik 🛅
	BE Auditorium Meyrin, CERN	09:00 - 09:20
	Status of GEM DHCAL	WHITE, Andy 🛅
	BE Auditorium Meyrin, CERN	09:20 - 09:40
	Low X-ray background measurements at the Canfranc Underground Laborato	ry 🛛 GALAN, Javier 🛅
	BE Auditorium Meyrin, CERN	09:40 - 10:00
10:00	Status of the construction of the 250L double phase LEM-TPC	RESNATI, Filippo 🗎
	BE Auditorium Meyrin, CERN	10:00 - 10:20
	Cofee break	
	BE Auditorium Meyrin, CERN	10:20 - 10:40
	THCOBRA for Ion Back Flow Reduction in THGEM based photosensors	PEREIRA, Fábio 🗎
	BE Auditorium Meyrin, CERN	10:40 - 11:00
11:00	Electroluminescence yields in MicroMegas, THGEM and GEM	NATAL DA LUZ, Hugo 🛅
	BE Auditorium Meyrin, CERN	11:00 - 11:20
	Characterization of the electrical response of Micromegas detectors to spark processes	GALAN, Javier 🛅
	Performance of a resistive Micromegas in a neutron beam	TSIPOLITIS, Yorgos 📄
	BE Auditorium Meyrin, CERN	11:40 - 12:00
12:00		

- Status report (GridPix, GEM DHCAL)
- Rare event detectors (CAST, ArDM, EL)
- Single electron detectors (IBF)
- Discharges in Micromegas (modeling, TB)

Status of GEM DHCAL, A. White

- Calorimetry at future linear colliders
 - High lateral and longitudinal segmentation
 - Thin chambers (1 cm) with small pads (1 cm²)
- Physics prototype of 1 m³ composed of 1 m² chambers

- Report on use of 2 ASICs to read out small chambers:
 - KPiX, analogue information
 - DCAL, purely digital
- Trials with THGEM in beam

Status of GEM DHCAL, A. White

- Double GEM characterisation and KPiX readout (8x8 pads) with sources and cosmics
 - Gas gain, resolution
 - Pressure effects
 - Noisy channels

- Beam test in SPS/H4 2010 of THGEM + KPiX
 - Stability issue
 -> alternative readout
- TB with resistive layer in 2011

Status of GEM DHCAL, A. White

- First test with DCAL chip
 - All channels alive few noisy ones
 - Used for US RPC/DHCAL
 - Detection of ⁵⁵Fe and cosmics signals!

- Towards larger area
 - 5 foils of 33x100 cm² from CERN workshop qualified
 - Characterisation with KPiX and DCAL of 2 chambers
 - 2013-2015: build and test inside CALICE stack a 1 m² prototype

- Cross-talk events
- TB data analysis
- DARWIN project

- GOSSIP (GridPix)
 - TimePix chip
 - Integrated Micromegas
 - Silicon protection layer

- Absence of plateau in TB data
 - Si₃N₄ protection layer
 - Signal can spread to neighboring pixels
 - More pronounced at high gas gains
- Should also show up in other counting experiments
 - Study with ⁵⁵Fe conversions in 8 cm drift gap chamber
 - Investigation in He/isobutane (max gas gain of 63k)

Number of hits per track vs grid voltage

- Number of hits from quanta conversion
 - Hits due to resistive layer cleary identified with TOT mode Small number of counts and none is isolated
 - Recover plateau after correction!

Zoom in small charge range

- 2010 TB data analysis
 - Local track fitting
 - Weigth individual electrons as a function of position in drift gap
 - Consider errors on position and time (diffusion, clock, pixel pitch)
- Fit in XZ plane: position and angular resolution of 60 um & 0.26 rad
- Fit in XY plane: position and angular resolution of 11 um & 0.06 rad

- WIMP detection in liquid gases
 - XENON
 100 kg now, upgrade to 1T
 - DARWIN project (Ar, Xe)

- Application of GridPix for DARWIN
 - Thermal stress
 - Operation of TimePix at low temperature
 - Gas gain in pure gas

Status and upgrade of the 250L LAr LEM-TPC, F. Resnati

- Proton decay search
 - T32 experiment at J-Parc hadron facility with a 250 l liquid Ar TPC
 - Benchmark performance (pion/kaon separation...)
 - Proposed double phase operation to increase signal to noise ratio (currently 20) and provide 2D readout

- 3L double phase LEM TPC
 - 10x10 cm², 2D strip readout
 - Fully caracterised at CERN
 - S/N > 200

Status and upgrade of the 250L LAr LEM-TPC, F. Resnati

- Upgrade of the 250 I TPC with so-called readout "sandwich"
 - Extraction grid
 - LEM
 - Signal plane

- Signal plane
 - -76x40 cm²
 - 256x256 strips of 55 cm
 - S/N > 200
- LEM
 - -76x40 cm²
 - 8 HV segments

Complete readout unit

LEM of 76x40 cm2 (CERN workshop)

Status and upgrade of the 250L LAr LEM-TPC, F. Resnati

- Test of the readout "sandwich"
 - Preliminary test are on-going
 - Cosmic test inside ArDM vessel at CERN before summer
 - Send to Japan

1t liquid Ar detector presently assembled at CERN

Part1

Low X-ray background measurements at the Underground Canfranc Laboratory, J. Galan

- CAST experiment
 - Solar axions (DM candidates)
 - Would (re)convert into X-ray inside an intense B field
 - Expected signal in the 1-10 keV region
 - Sensitivity depends on background

- Detector
 - MicroBulk
 - 106x106 strips (6x6 cm²)
 + mesh signal
 - Argon/isobutane 98/2
- X-ray event selection
 - Temporal & spatial info.
 - Energy balance mesh/strips
 - Pulse shape...

Low X-ray background measurements at the Underground Canfranc Laboratory, J. Galan

Measured background

- From 2008 to 2010, rate below 10⁻⁵ /keV/cm²/s
- 2.25 counts/hour
- Try to reach even lower limit
- Further test under labcontrolled conditions

Gas, Ar + 2% iso, flowing in open loop with flow and pressure controlled

Shielding reproduces sunrise configuration.

Faraday box prepared for automatic calibrations with ⁵⁵Fe source.

Slow control: temperature and pressure and detector currents

Some modifications in electronics. Fundamental modules are the same.

Nitrogen flux = 30 - 50 l/h (for vol < 17 l) Capacity for more than 2 weeks.

• Set-up in Zaragoza

Low X-ray background measurements at the Underground Canfranc Laboratory, J. Galan

- Set-up in Canfranc (LSC)
 - 10⁴ reduction of cosmic flux
 - Hard equipping, installing and cleaning work! (4 tons of Pb bricks)

- Improvement by a factor > 20
 - 2.10⁻⁷ /keV/cm2/s
 - 1 count/day
 - Limited only by detector material radioactivity
- Starting GEANT4 simulations
 - Background nature
 - Optimise future shielding

THCOBRA for ion backflow reduction in THGEM based photosensors, *F. Pereira*

- Detection of single photons in the UV or visible range
 - High gas gain
 - Large number of ions
 - Feedback pulses
 - E field distorsion
 - Photocathode aging

- THCOBRA
 - One THGEM with strips
 - Tuning of V_{AC} -> trap ions
- Study ion back flow and detection efficiency in Ne/CH₄ 95/5 for various V_{AC} settings

THCOBRA for ion backflow reduction in THGEM based photosensors, *F. Pereira*

- Detection efficiency (pulse mode)
 - Keep gas gain constant
 - Measure single photon spectrum
 - Number of entry yields efficiency
- Ion backflow fraction (current mode)
 - Measure photo-current with simple //-plate geometry
 - Measure THCOBRA top and bottom currents

100 V transfer | 333 V/cm
200 V transfer | 666 V/cm
Efficiency 100 V transfer
Efficiency 200 V transfer

Electroluminescence yields in Micromegas, THGEM & GEM, H. Natal da Luz

- Light signal ۲
 - Decoupled to electronic noise
 - Better signal to noise ratio compared to charge readout
 - Application for rare events search

Gap: 50 um Hole diameter: 25 um

Thickness: 0.4 mm Hole diameter: 0.4 mm Rim: 0.1 mm

Spectrum of 22.1 keV X-rays in Xe

Electroluminescence yields in Micromegas, THGEM & GEM, H. Natal da Luz

- Micromegas
 - Q Gain in xenon VS E/P at various P
 - Q Resolution in xenon
 - Sc Gain
 - Scintillation yield
 - Ratio Q/Sc gains

- THGEM, GEM
 - Same study
 - Additional measurements in Ar

• Summary

Table I – Maximum gain and scintillation yield for GEMs and THGEMs operating in argon and xenon at 1 bar and 2.5 bar.

		Xenon		Argon	
		1 bar	2.5 bar	1 bar	2.5 bar
CEM	Gain	1.5 × 10 ⁵	4×10^{4}	5 × 10 ³	5 × 10 ³
GEM	Yield	6 × 10 ³	1.5 × 10 ³	3 × 10 ²	3 × 10 ²
TUCEM	Gain	1.2 × 10 ⁶	4×10^{4}	1.2 × 10⁵	3 × 10 ⁴
INGEM	Yield	7×10^{4}	2 × 10 ³	1.5 × 10 ⁴	4 × 10 ³

Double mesh, uniform field scintillation gap yields 466 photons/e⁻/cm @ 4.1 kV/cm/bar

- Maximum Q gain VS P
 - Interesting difference in maximum gain behaviour with pressure

Performance of resistive Micromegas in a neutron beam, Y. Tsipolitis

- Context
 - Spark-proof chamber for Super-ATLAS (MAMMA)
 - High neutron flux expected close to the beam pipe
 - Rate up to 10⁴ kHz/cm²
 - Energy up to 10 MeV roughly

- Tandem at Demokritos
 - 3 neutron energy ranges
 - Between 0.1 and 26 MeV
 - Fluxes up to 5.10^6 /cm²/s

Performance of resistive Micromegas in a neutron beam, Y. Tsipolitis

- Detector under test
 - Resistive Bulk (Ar/CO2)
 - Different resistance to ground and along strips

CHAMBER	R11	R12	R13	R16
Resistance to Ground $(M\Omega)$	15	45	20	55
Resistance along strip $(M\Omega/cm)$	2	5	0.5	35

- Results
 - Basically no voltage drop
 - Spark current depends on chamber
 - Best lies below 100 nA
 - Compatible with first test in same beam (2010) of R11 chamber

En=5.5 MeV, flux= 0.7x10⁶ n/cm² s

Performance of resistive Micromegas in a neutron beam, Y. Tsipolitis

- Drift field scan
 - 4 x higher spark rate in Ar/CO2 80/20 than in 93/7
 - Spark rate trend follows that of transverse diffusion!

- Neutron energy
 - Higher rate at higher energy
 - Understood as parasitic neutrons from D(D,np)D reactions above 4.45 MeV

Characterisation of the electrical response of Micromegas detectors to spark processes, J. Galan

- Aim
 - Establish a methodology and electrical modeling of sparking phenomena
 - Understand electronic response of different RO systems
- Standard Bulk Micromegas
 - Measure spark signals
 - Adjust model parameters on measured signals

• Full detector equivalent circuit

- Study just started
 - Measure pulse shape with different connection schemes

Characterisation of the electrical response of Micromegas detectors to spark processes, J. Galan

- Signals measured on scope
 - Raise HV beyond sparking voltage

Model of the spark
 ElectroStatic Discharge (ESD)

Characterisation of the electrical response of Micromegas detectors to spark processes, J. Galan

- First fits of model parameters to ۲ spark signals measured on neighboring strips
 - Fit does not work on all observed shapes
 - But effect of strip resistance nicely reproduced

- Next steps
 - Investigate resistive detectors
 - Influence of inductive elements at high frequencies

Resistive strip

Metallicstrip

R16-R17

Last slide

- Thanks to the speakers for their contributions
- Thanks you all for your attention