WG4 – Calculations

Summary of activities since January 2011

Gas properties

Noble gas elastic cross sections: **Steve Biagi:** working with the LXcat group Noble gases, UV production: Carlos Bastos: publication submitted Noble gases, IR production: Aveiro: starting a study Xenon ionisation **Ozkan Şahin & Steve Biagi:** ionisation cross section update Start of Penning study Work function and Fano factor Heinrich Schindler & Steve Biagi:

LXcat

LXcat (pronounced *elecscat*) is an open-access website for collecting, displaying, and downloading ELECtron SCATtering cross sections and swarm parameters (mobility, diffusion coefficient, reaction rates, etc.) required for modeling low temperature plasmas. [...]"

URL: http://www.lxcat.laplace.univ-tlse.fr/

LXcat people

Art Phelps,
Leanne Pitchford – Toulouse,
Klaus Bartschat – Iowa,
Oleg Zatsarinny – Iowa,
Michael Allan – Fribourg,
Steve Biagi

Michael Allan

Leanne Pitchford

Klaus Bartschat

Krypton data

 A remarkable joint study with high-precision experimental data and a theoretical model has just been published:
 O. Zatsarinny et al. (2011) 10.1103/PhysRevA.83.032713

Plans on elastic cross sections

- It is notoriously difficult to measure absolute electron elastic cross sections – the associated uncertainties are amongst the most important in Magboltz.
- The goal is establishing a reference set of elastic cross sections at the maximum in Ar, Kr and Xe.
- Currently, the accuracy of $\sigma_{\rm mt}$ is ~ 5 % and the hope is that this will reduce to 2-3 %.

Origin of UV and IR radiation

VUV check

- Data and calculations agree on VUV yield in uniform fields.
- Submitted: Phys. Lett. B

IR

- Next goal: reproducing the IR measurements of A. Buzulutskov et al.
 RD51-Note-2011-002
- Our feedback attempts
 stand to benefit greatly
 from this work.

Comparing ionisation cross sections

The Xe-CH₄ puzzle

Transfer rates

One σ from 10 meV to 10 MeV !

W and F for pure gases match;

Predictions can be made for Penning mixtures.

Microscopic tracking

Micromegas transparency:

- Saha: wire elements added;
- neBEM calculation added;
- **Kostas Nikolopoulos:** paper submitted.
- GEM transmission:
 - Heinrich Schindler: Compared with measurements;
 - B field added.

Flux vs microscopic ?

- A diffusion-free flux argument does not reproduce the data.
- The microscopic approach works.
- Calculations done using finite elements.

Thin-wire approximation ?

- The thin-wire approximation is usual in wire chambers – but is not adequate here.
- Calculations done using neBEM.

What we learned

- Simulation of small scale devices requires that: diffusion is taken into account;
 - structures are modeled without oversimplification;
 - dipole moments are included.
- Microscopic tracing, both using finite element and using boundary element fields, successfully reproduces the transparency.

[Submitted to JINST, JINST_006P_0411]

Electron transmission of a GEM

Computed with Magboltz 8.9.3 and Garfield++:

F. Sauli, L. Ropelewski, P. Everaerts, NIM A 560 (2006) 269-227.

Electron transport in a GEM

► $B = 4 \text{ T} \perp \text{GEM}$, T2K gas:

Effect of B on GEM transmission

The idea

Preliminary ideas on conceptual design:

- · Neutron conversion to recoil protons using polyethylen entrance window.
- Photon conversion using a lead glass structure with optimised geometry and surface to volume ratio:

More detail: Hartmut Hillemanns' presentation in WG1.

Photon detection

Four-step process:

- Compton scattering of the γ producing a recoil e⁻, or e⁺e⁻ production in the nuclear field;
- e⁻ traverses the absorber and enters the gas;
- transport of the e⁻ through the gas;
- amplification and detection.

Losses occur at all stages and need to be controlled.

γ -Mean free path in some materials

As provided by NIST:

	λ 3 MeV	$\lambda 4 \text{ MeV}$	λ 5 MeV	λ 6 MeV	Density	Z/A
	[cm]	[cm]	[cm]	[cm]	$[g/cm^3]$	[-]
W	1.27	1.28	1.26	1.23	19.30	0.403
Pb	2.08	2.10	2.06	2.01	11.34	0.396
Lead glass	3.94	4.08	4.10	4.06	6.22	0.421
Pyrex	12.40	14.30	15.80	17.00	2.23	0.497
PET	19.50	22.80	25.60	28.10	1.38	0.520
Bakelite	21.30	24.90	28.00	30.80	1.25	0.528

Compton recoil electron – energy

The energy ϵ_e of the recoil e⁻ peaks at the kinematic maximum:

$$\epsilon_{e}^{max} = \epsilon_{\gamma} \frac{2a}{1+2a}$$
$$a = \epsilon_{\gamma} / m_{e}$$

This is independent of the absorber.

e⁻ Range in lead glass

▶ PbO (25 %) + SiO₂ (75 %) with density 6.22 g/cm³:

Energy	Stopping power		R	Range			
	Collision		n Tota	al C	CSDA		
MeV	MeV cm ²	'g MeV	cm^2/g N	/IeV cm ² /g	g/cm ²	mm	
0.10	0 3.04	-3 0	.0152	3.058	0.020	0.03	
1.00	0 1.39	95 0	.0440	1.439	0.574	0.92	
2.00	0 1.39	95 0	.0828	1.478	1.263	2.03	
3.00	0 1.42	.4 0	.1256	1.550	1.924	3.09	
4.000	0 1.45	0	.1711	1.622	2.554	4.11	
5.00	0 1.47	4 0	.2183	1.692	3.158	5.08	
6.00	0 1.49	03 0	.2669	1.760	3.737	6.01	

Catching electrons below 1 MeV is a challenge.

Detour factor

- The projected distance covered by the electrons is smaller than the CSDA range by the *detour factor*.
- For heavy materials, the factor seems to be ~ 0.25.

[Tatsuo Tabata and Pedro Andreo, 10.1016/S0969-806X(98)00184-4]

Required granularity

The precise projected range remains to be worked out. Assuming a detour factor of 0.25 and a CSDA range of 4 mm (lead glass), absorber material more than 1 mm from a gas channel is likely to be inefficient.

Higher density absorbers require finer granularity.

Parameters

Absorber:

Solution Assuming a high- ρ lead glass, 25 % conversion efficiency requires > 1 cm of absorber (net).

Gas channels:

- in high-ρ lead glass, absorber material > 1 mm from a gas channel can go undetected;
- channel diameter should be > 2 mm if length > 2 cm;

Density scaling:

- lacktriangleright absorber thickness: $\propto \rho$,
- let channel diameter: $\propto \sqrt{\rho}$,
- lacktriangleright inter-channel gap: $\propto \rho$.

Next step

- Photon detection draws on "neighbouring" physics: whilest being well-understood, it is an opportunity to enlarge our horizon.
- Some institutes manifestly encourage developing devices which are of practical use.
- Simulation-wise, the real challenge is detecting the neutrons. Volunteers welcome !

The latest thing: schools ...

We've been involved in:

- RD51 school 1 month of preparation, 1 week of practical exercises;
- EDIT 2 weeks of preparation and 2 weeks of daily demonstrations with lecturing for 1 week;
- Marie Curie largely drawing on EDIT, 2 days of lectures and demonstrations;
- NNK Quark travels 2 days of lectures.
- Upcoming:
 - EIRO 1 week of preparation, 1 week of school.