

CMS upgrade – Large area GEMs Stefano Colafrancheschi

- Forward region of CMS, where RPCs cannot cope with rate
- Both tracking and triggering
- Dimensions and connection to services constrained by existing infrastructure
- Rapid development: from first concept to fullOsize prototype in 1 year
- 3 beam tests last year, the last one with large prototype

- Another prototype in preparation with reduced gap structure
- Higher granularity to improve trigger performance
- Beam test and simulations in magnetic field

MAMMA Joerg Wotschack

- Large prototype with unidirectional resistive strips
- Half the size of envisaged detector
- Low leakage current, stable operation
- First cosmic event recorded

- Bidirectional strips
- Both directions capacitively coupled
- Sharing depends on width top strips

Feb/Mar 2011: Test installation in ATLAS cavern!

To come:

- 2011: Full-size prototype with 2D readout
- 2011: Long term aging test
- 2012: Choice of technology by ATLAS ...

Resistive MSGCs Vladimir Peskov

PCB with 5µm thick Cu layer

0.6mm

20µm

1mm

Milled grooved 100 μm deep and 0.6 μm wide, pitch 1mm.

The grooves were then filled with resistive paste

By a photolithographic technology Cu 20 μm wide strips were created between the grooves

- Achieves high gain
- The resistive cathodes allow readout of a second coordinate.

Thick GEMs for photon detectors Silvia Dalla Torre

Problems controlling rim size

Cleaning the interior of holes

30x30 cm² prototype design

18µm

5µm

18µm

I.

1 2

3

4

Laser drilling fine-pitch meshes Vincenzo Berardi

#9_02Mar_5down_laser_exit04

#9_02Mar_5down_laser_exit05

GEM-TPC for Super-FRS @ Fair Francisco Garcia

NUSTAR = Nuclear Structure, Astrophysics and Reactions

Technology Transfer Network – MPGD pilot offer

- Make MPGD technologies available for collaborative R&D
- Understanding market needs and opportunities

For example: a pilot offer to Homeland Security sector. Combined neutron/gamma detector for cargo scanner

Large GEMs for CBM @ FAIR Uli Frankenfeld

Proposed layout, based on singlemask GEMs. About 100 m² of such detectors in total. Rates up to 100

- About 100 m² of detectors in total
- Rates up to 100 kHz/mm^2 !
- RD51 beam test this year

33cmx100cm GEM qualification and DHCAL plans Nam Tran

- Large double GEM detectors for a (semi-) digital HCAL
- GEM foils of 33cmx100cm, with long slim sectors, each of which must be tested

GEM-based beam monitors Gabriele Croci

Small TPC (no B-field) for monitoring of profile and paralellism.

Triple GEM with boron carbide coated cathode. ~1% efficiency is sufficient, due to high rate (10kHz/mm^2).

Measured pattern of grid of beamlets.

High flux fast neutron beam profiling, using a polyethylene converter in front of a triple GEM detector.

