

Timepix readout

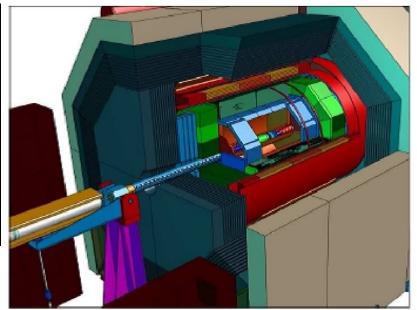
A readout system for a pixelated TPC

Michael Lupberger

University of Bonn

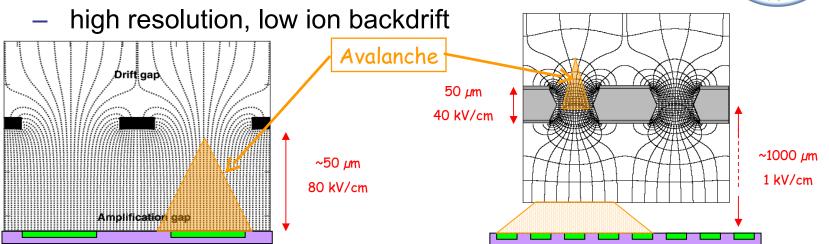
RD51 7th annual meeting, 13th - 15th of April 2011 CERN

- Motivation
 - ILC detector
 - TPC tracking
 - Endplate concepts
- Timepix chip
- Readout system: status
- New readout system

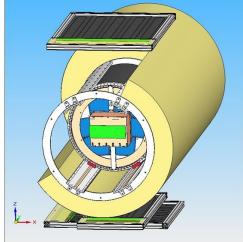


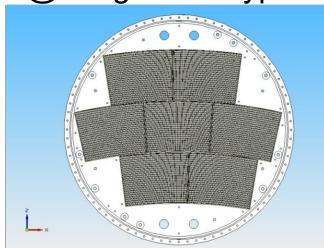
- International Linear Detector
 - constrains on momentum resolution: $\sigma_{1/p} \sim 5 \times 10^{-5}/\text{GeV/c}$
- Use Time Projection Chamber (TPC) as central tracker

Size	ø = 4.1 m
	L = 4,6 m
Momentum res	δ(1/p _t) ~10 ⁻⁴ /GeV/c
$\sigma_{_{ m point}}$ in $r arPhi$	~100 µm
$\sigma_{_{point}}$ in rz	~ 0,5 mm
dE/dx res	< 4,5 %

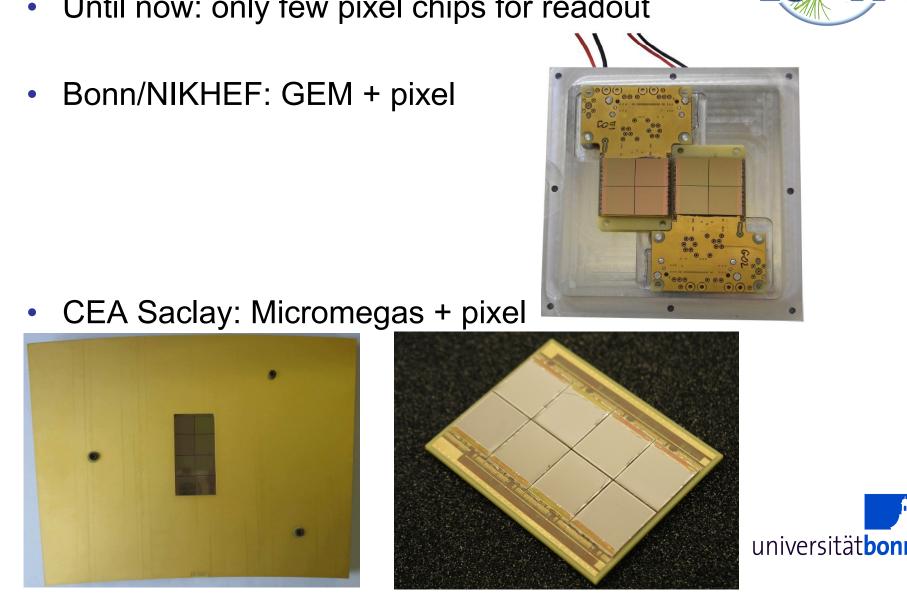


- For high point resolution
 - \rightarrow use micro pattern gaseous detectors




MPGDs

Gas amplification process: Micromegas or GEM



- Readout structure: Pads or pixel
- Different setups tested @ Large Prototype of LCTPC collab.

Pixelated endplate

Until now: only few pixel chips for readout

5

Timepix chip

• Readout chip: The Timepix chip

Properties

- 1,4 x 1,4 cm² active surface
- 256 x 256 pixel matrix
- CMOS 250 nm technology, IBM
- 55 x 55 µm² per pixel
- amplifier/shaper (t_{rise} ~150 ns)
- 14 bits count clock cycles
 - \rightarrow Pixel pit when/how long
- clock up to 100 MHz in every pixel
- lower threshold
- noise level ~ 500 e-

universität**bon**

Timepix chip

- 4 different modi to operate
 - <u>Medipix:</u>

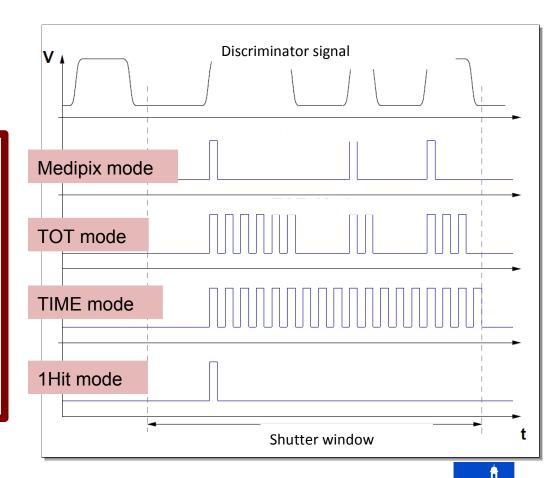
Pixel hit how often

– <u>Time-over-threshold:</u>

Pixel hit how long

 \rightarrow proportional to charge

– <u>Time:</u>


Pixel hit when

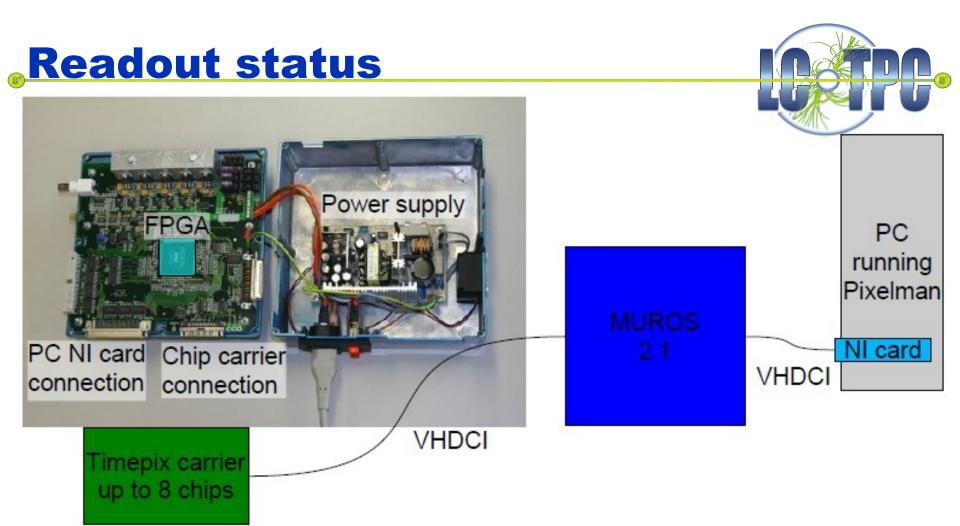
 \rightarrow time of arrival

– <u>1Hit:</u>

Pixel hit in shutter window

universität**bon**

Readout system: status


• MUROS v2.1:

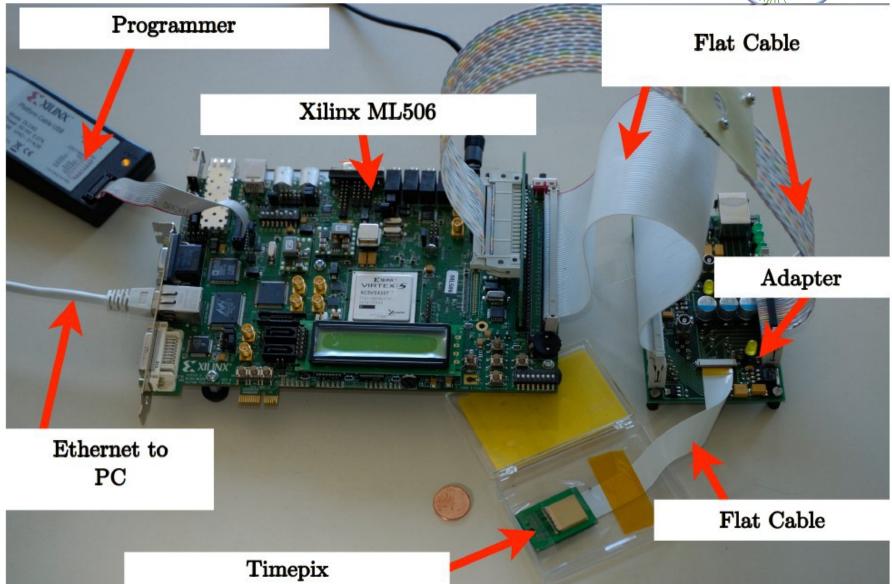
- designed at NIKHEF for Medipix2 and Timepix chip readout (new FPGA code)
- serial readout for at most 8 Timepix chips
- VHDCI cable <3 m to Timepix carrier board
- VHDCI cable to NI card in PC
- Timepix readout: theo. < 50 frames/sec
 lowered by shutter length
- adjustable readout frequency [<240MHz]
- data acquisition on PC(Pixelman software)

http://www.nikhef.nl/pub/experiments/medipix/muros.html

- Problems with MUROS v2.1:
 - only limited availability, no production
 - NI card and driver out of date
 - at most 8 chips daisy chained

New readout system

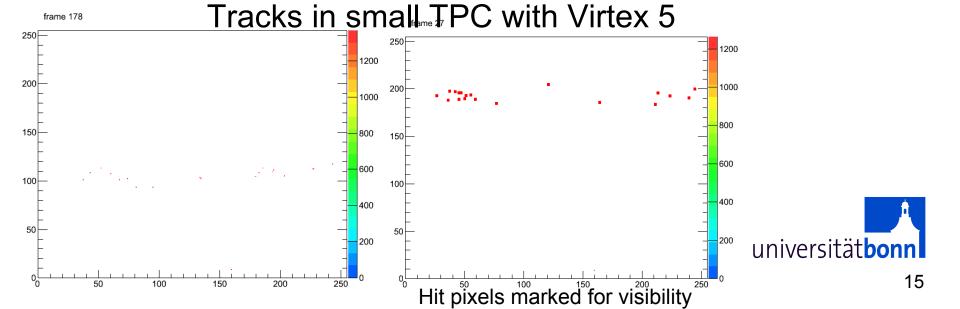
- Goals:
 - ultimately read out ~100 chips
 - \rightarrow large area detector (e.g. full TPC endplate module)
 - modular system \rightarrow use SRS (RD51)
 - ethernet based
 - use Virtex6 FPGA
 - zero suppression
 - triggerable, integrate with slow control & calibration
 - Timepix2 compatibility in view


First steps

- Single chip readout (Uni Mainz)
 - Timepix chip on FR4 carrier
 - LVDS link
 - Adapter board
 - trigger
 - test pulses
 - power supply
 - Xilinx ML506 evaluation board (Virtex5)
 - Timepix control
 - ethernet (UDP) communication
 - PC software
 - command prompt based
 - Timepix control
 - data acquisition

Mainz readout system

- On-chip Ethernet MAC
- On-board Gigabit Ethernet phy chip
 - 1000BASE-T
 - no embedded CPU
- Firmware
 - VHDL description
 - common clock for digitisation and data transfer, crystal based
 - serial/deserial interface to the Timepix bit-serial port
 - Timepix matrix data not buffered in FPGA
 - \rightarrow kept on Timepix while awaiting packet transmission
 - shutter with programmable delay and width
 - software control or
 - external trigger (TLU)
 - non-volatile storage of hardware description on CF card universitation


Bonn activities

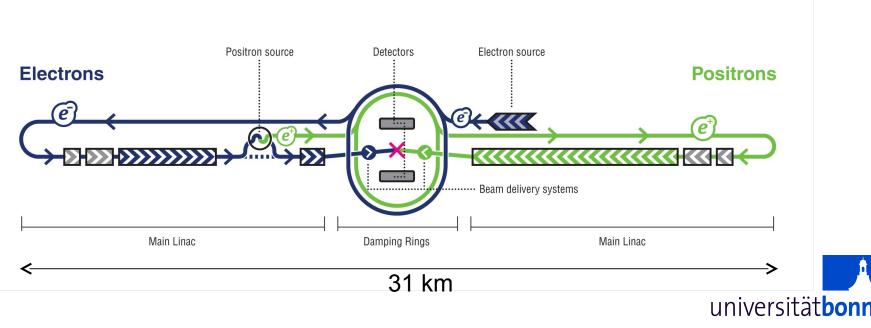
- Setup of second Mainz system in Bonn
 - Xilinx ML506 board with Virtex5 FPGA
 - single Timepix readout
 - adapter board
- Re-target to Virtex6
 - Xilinx ML605 board with Virtex6 FPGA
 - firmware modifications to Virtex5 VHDL
 - new ethernet MAC
 - adapt to different clock and pin setup
 - implement Timepix control modules
 - solve timing problems
 - hardware modifications
 - new adapter board for cabling

TPC readout with V5/V6 Virtex 5 Virtex 6 frame 0 frame 0

Way to go

- Use Modular system: Scalable Readout System SRS.
 - small set of modular components
 - performance at low cost
 - designed for scalability
 - (e.g. 1 FEC for 8 chips x
 - 14 FEC/crate = 112 chips)
 - plugin-choice of frontend ASICs \rightarrow to do
- Multi chip (first step: 4 or 8) readout with Virtex6 (Bonn)
- Or single chip readout with SRS
- Mechanics of box to house Readout card, including all connectors, supplies, switches and LEDs (Saclay)

Summery


- Development of pixelated readout for a TPC
- Other field of interest: LHC upgrade:
 - pixelatex gaseous inner tracker layers (Gossip)
 - concept lately approved by ATLAS upgrade steering committee
- New readout system required
- Development of an FPGA based modular system using SRS
- Read out ~100 Timepix chips

- International Linear Collider
 - one of the concepts for a future $e^- e^+$ collider
 - 0.5 TeV (1TeV) centre of mass energy
 - beam structure: 1 ms trains every 200 ms
 - one interaction point, 2 detectors (push-pull)

