

Detectors

- Telescope
 - 4 Gassiplex chambers
 - 3 scintillators
- 1 m² prototype
 - 4 ASUs with 24 HR2
 - 1 ASU with 24 HR2b

Trigger

- Coincidence PM
 + READY of 2 acquisitions
- Delay of 1 μ s to m²

Rates

- Beam: 150 GeV/c muons 100–500 kHz over 5×5 cm²
- Acq. rate \sim 100 Hz

RD51 Collaboration Meeting CERN, April 2011

Efficiency and multiplicity - 420 V (I)

 σ_m

0.03

Run @ 420 V

High gas gain (10⁴)

 σ_{ϵ} (%)

5

■ Low *thr* of 1–2 DAC units

Best performance

 $\overline{\epsilon}$ (%)

 43.6 ± 2.6

 \overline{m}

 1.05 ± 0.03

Future plans

MICROROC new ASIC

- Shaping time up to 200 ns
- Noise on test board: 0.24 fC
- 350 chips available (2 m²)

Next m² prototypes

- Now: 6 ASU with 24 ROCs
- Calibration on-going
- Bulk at CERN in May
- Assembly in June

Test beam in 2011

- 3–9/08 (CALICE)
 9–21 (RD51)
- Would like to use the Micromegas telescope
- RD51 users welcome during CALICE period
- Our settings: 150 GeV/c muons rate ≤ 1 kHz

2011 TOTEM T2 Test Beam Plans

TB aim: Collect data for...

- 1. T2 optimization "Before the Long Shut Down".
- 2. Triple GEM design optimization for forward regions & high luminosity (T2 optimization "During the Long Shut Down" and GEM RD)

TOTEM

T2: a T2 limit with high luminosity

T2 Environment: Large amount of particles (primary and secondary) per collision.

T2 Gain: High GAIN to be efficient in the actual configuration

The amplified charge collected by the foils will cause a voltage drop across the 10Mohm protection resistors.

In high intensity beams the current flowing in the foils can reach few μA and the effect on the gain is not negligible.

MANDATORY: reduce as much as we can the detector GAIN

T2 optimization: Signal

Gas mixture studies: Actual mixture: Ar/CO2 70/30

- Migration to Ar/CO2/CF4 in a ratio optimized for the internal field configuration that we have.
 - Lab. Gain calibration Curves
 - Test Beam Efficiency and Timing Studies

Increase the Signal \rightarrow Lower the Gain (VFAT2 shaping time=22ns)

DETECTOR UNDER TEST : TOTEM T2 TRIPLE GEM

2010 test beam: preliminary measurement with Ar/CO2/CF4

Gain

2011 TOTEM T2 TB Plans

- 1. T2 (as it is now) optimization (BLSD*) → reduce the detector GAIN
 - Front end chip (Noise)
 - Gas mixture (Signal)
- 2. Triple GEM design optimization for forward regions & high luminosity
 - Gas mixture & fields & Internal structure (gaps).
 - Readout Planes

(*) Before the Long Shut Down

DHCAL THGEM August Results - μ vs π

Detection elements for DHCAL, based on THGEMs

on THGEMs

J.F.C.A. Veloso et al.

DHCAL for ILC

THGEM

Detectors and readouts

August results

October results

Conclusions

PIONS

MUONS

Measured very low discharge rates even with pions @ rates >>ILC THGEM: 0.4mm Gain: 1200-1400

- Muons ans pions easily measured, but charge signals very low,
- Spark rate was fine, but KPiX needed higher signals (> 15 fC).

RD51 Collaboration Meeting CERN, April 2011

Detection elements for DHCAL, based on THGEMs

August Results - efficiency

J.F.C.A. Veloso et al.

DHCAL for ILC

THGEM

Detectors and readouts

August results

October results

Conclusions

Maximum detection efficiency ($\epsilon = 96\%$) was reached very early, even with a small drift gap.

RD51 Collaboration Meeting CERN, April 2011

Resistive Well-THGEM

DHCAL for ILC

THGEM

Detectors and readouts

August results

October results

Conclusions

- Acquisition with standard electronics chain (KPiX was not working);
- Very high gain with no sparks (~ 5600);
- Charge pulses more than enough for KPiX.

RD51 Collaboration Meeting CERN, April 2011

2011 plans

DHCAL studies for THGEM chambers + Kpix9:

•Establish working Kpix9 readout, check data against previous results.

Establish MIP signals, noise distributions for low rate beam in a number of pads.

 Measure the variation of MPV of Landau distributions with HV for a series of chamber positions/pads - move the chamber to hit different pad areas.

 Take combined data with THGEM and tracker system to establish tracks/pads correlations.

•Take series of runs with the chamber moving the chamber across beam to measure efficiency for each pad, sharing of signals between pads.

•Rate/time resolution studies.

Jlab GEM Tracker

SBS Spectrometer in Hall A

Prototype to be tested

- Fully equiped
 3xGEM 40x50 cm2
 module
- 2D readout, 400 um strip pitch
- 18 front-end APV25 cards (2304 channels)

• Gas: Ar/CO2 70/30

Front End Cards on the other side of the backplanes

16

Purpose of the Test

- Characterize the 40x50 cm² 3xGEM module prototype in terms of:
 - Cluster width and displacement
 - Collected charge
 - Efficiency
 - Residuals
- Study in Magnetic Field up to 500 Gauss
- Study at highest intensity beam (?)
- Further characterization of the APV25 based electronics (field effects, noise ...)

Verify assumption at low field

RD51 Collaboration Meeting CERN, April 2011

Setup

Detector Under Tests: 40x50 cm2 – 3xGEM Prototype

Ancillary Detectors: 2 PMTs 2 APDs RD51 GEM (or uM)

- Use of Goliath (up to 500 Gauss)
- Gas: Ar/CO2 70/30 (premixed)

Detector summary

built СМS_timing_GEM: Double mask 10x10cm² 1D readout (3/2/2/2); 256 channels built CMS_Proto_I: Single mask FULL_SIZE 1D readout (3/2/2/2); in construction 1024 channels CMS_Proto_II: Single mask FULL_SIZE 1D readout (3/1/2/1); CMS_Proto_III: Single Mask 10x10cm² [N2] (3/1/2/1); Scheduled 256 channels built CMS_Proto_VI: Single Mask FULL SIZE 1D [N2] (3/1/2/1) 8192 channels

GE1/1 Prototype in details: last TB CMS_Proto_I

Data-taking focused on different points along the GE1/1. Preliminary results show good performance.

The Micromegas TPC prototype test setup at Saclay

The new X-Y Micromegas readout board design

Based on MIMAC's Saclay design modified and constructed by Rui's lab at CERN

pions seen by the MM-TPC during October 2011 RD51 test beam

- The MM-TPC can function in muon beams and low intensity hadron beams
- Noise should be further reduced to be able to self trigger on pure events
- Intense tests of the different available data acquisition system are needed before we go back for further and more detailed beam tests.
- A very useful proof of principle has beam accomplished in last years October RD51 test.

Test beam for 2011

RD51 Collaboration Meeting CERN, April 2011

Test beam requests for 2011

- We have 9 groups that will participate in the 2011 RD51 Test Beams
 - 1st period : 3 groups
 - 2nd period : 6 groups
 - 3rd period : 9 groups

Fringe magnetic field has been measured in several point in the area..

.. and in the corridor just outside

Measurement Map

Point	Half Current	Maximum Current
1	0.0005 T	0.007 T
2	0.0004 T	0.010 T
3	0.0005 T	0.007 T
4	0.005 T	0.011 T
5	0.868 T	1.518 T
6	0.0003 T	0.006 T
7	0.0009 T	0.009 T
8	0.0004 T	0.008 T
9	0.0001 T	0.0001 T
10	0.0001 T	0.0011 T
11	0.0001 T	0.0004 T

Changes at the Area

CERN, April 2011

New Cables

- New patch panels from control room to the area:
 - 36 connectors type SHV
 - -60 connectors type BNC
 - -10 connectors type Rj45
 - 5 connectors type Subd9
 - 2 connectors type Subd9 (Profibus)
 - 3 connectors type Burndy 12, 19 & 28 pins

Period 1 (June 27th - July 5th)

Organization

• It would be nice if each group has one contact person for the test beam since it facilitates the communication.

Conclusion

• We are ready for one more year with lots of fun in H4

