H. Natal da Luz et al.

Motivation

Detector

Data

Some analysis

Conclusions

Some results with SRS readout and DAQ tests with THGEM

<u>H. Natal da Luz</u>1

C.D.R. Azevedo² L. Arazi³ A. Breskin³ J.F.C.A. Veloso²

¹Coimbra Univ. – Portugal

²Aveiro Univ. - Portugal

³Weizmann Institute of Science – Israel

April, 14 2011

H. Natal da Luz et al.

Motivation

Detector

Data

Some analysis

Conclusions

Summary

4 Some analysis

H. Natal da Luz et al.

Motivation

Detector Data

Some analysis

Conclusions

Digital Hadron Calorimetry for ILC

H. Natal da Luz et al.

Motivation

- Detector
- Data
- Some analysis
- Conclusions

New concept for DHCAL: THGEM

2 sampling layers (out of 40) with THGEM-based elements

Sampling jets + advanced pattern recognition algorithms → Very high-precision jet energy measurement.

Simulated event w 2 hadronic jets

Reconstructed jet: Simulated energy resolution $\sigma/E_{jet} \sim 3\%$ (CALICE)

H. Natal da Luz et al.

THGEM-based Digital HadronCalorimeter concept

• up to 1.7 particles/pad overlap is acceptable.

H. Natal da Luz et al.

Motivation

Detector

- Data
- Some analysis
- Conclusions

Thick Gas Electron Multiplier (THGEM)

~ 10-fold expanded GEM

Thickness 0.5-1mm

THGEM advantage for DHCAL: SIMPLE, ROBUST, LARGE-AREA Cheap: Printed-circuit technology Digital counting→ gain fluctuations not important

THGEM Recent review NIM A 598 (2009) 107

Double-THGEM: 10-100 higher gains

- •Robust, if discharge no damage
- •Effective single-electron detection
- •Few-ns RMS time resolution
- Sub-mm position resolution
- •>MHz/mm² rate capability
- •Broad pressure range: 1mbar few bar

H. Natal da Luz et al.

Motivation

- Data
- Some analysis
- Conclusions

Previous results in Ne-mixtures

- 2-THGEM: higher gains/lower HV
- But: low ionization (n_{tot} ~ 40 e/MIP)

H. Natal da Luz et al.

Motivation

Detector

Data

Some analysis

Conclusions

8×8 , 1 cm² readout pads

ILC standard: KPiX readout chip

 Readout pads built at CERN workshop with the same geometry as KPiX

• 64 pads/channels, active area: 8 × 8 cm²

CERN-made pads connected to SRS APV

Off-line Display S/W

H. Natal da Luz et al.

Motivation

Detector

Data

- Some analysis
- Conclusions

- Time and pad information for each event,
- key variables: apv_qmax, apv_tbqmax.

Off-line Display S/W

H. Natal da Luz et al.

Motivation

Detector

Data

- Some analysis
- Conclusions

Each event can be visualized separately,

• Charge shared between pads 20 and 28 (adjacent ones).

H. Natal da Luz et al.

Motivation

Detector

Data

Some analysis

Conclusions

Some Analysis

Pads in real geometry.

H. Natal da Luz et al.

Motivation

Detector

Data

Some analysis Conclusions $g_{0} \xrightarrow{\times 10^{3}}_{100}$

Time of Q_{max} for all pads.

Using time information

Using time information

H. Natal da Luz et al.

Motivation

Detector

Data

×10³ counts 30000 25000 80 20000 60 15000 40 10000 20 5000 0 16 18 20 22 24 Time bin at Q_{max} (μs) 2 8 10 12 14 6

Only pads hit by charge (isolated pads discarded).

Conclusions

Pulse-height distribution

H. Natal da Luz et al.

Motivation

Detector

Data

Some analysis

Conclusions

Only pad with higher Q_{max} and adjacent were used to build the distribution.

H. Natal da Luz et al.

Motivation

- Detector
- Data
- Some analysis
- Conclusions

Conclusions

- Although still in a developing stage, fits THGEM requirements very well;
- Provides very useful amount of information;
- Very important: no damage, even when operating at severe spark regime.

H. Natal da Luz et al.

Motivation

- Detector
- Data
- Some analysis
- Conclusions

Special thanks to:

- Leszek Ropelewski
- Hans Muller
- Joerg Wotschack
- Givi Sekhniaidze

- Sorin Martoiu
- Marcin Byszewski
- George Glonti.