

GEM R&D for CBM@FAIR

U.Frankenfeld GSI Darmstadt

Outline

The CBM Experiment @ FAIR

- Muon Sub-detector
- GEM-based Layout
- Experimental Conditions
- GEM R&D and Tests
 - Beam Test at SPS
 - Laboratory Tests

New FAIR Accelerator Center

Muon Detection System: MUCH

New Tracking Station Layout

1450 - 4750 mm

CBM baseline option

Much GEM Area

- standard layout:
 - 6 (5) stations each 3 layers of triple GEMs
 - stations using MicroMegas or Straws under discussion

station	distance to target [cm]	Diameter [cm]	GEM area [m ²] (3 triple GEMs)
1	155	145	4.6
2	205	190	8.1
3	255	240	12.5
4	315	300	19.1
5	380	355	28.1
6	510	475	50.3
all			73/123

Particle Rates Dose@ LHC DESY FAIR

Neutron fluence in CBM cave (FLUKA –simulation)

Typical operation scenario: 6 years $\Rightarrow 10^{13} - 10^{15} n_{eq}/cm^2$ \Rightarrow radiation hardness regime of LHC experiments

Particle Composition in MUCH

- Radial density profile of secondary particles at the first detector plane (after 20 cm Fe) of the CBM Muon Detector for central Au+Au collisions at 25 AGeV.
- The maximum particle density is 0.5 particles/cm²/event (event rate 10⁷)

9

Discharge Probabilities for Slow Hadrons

Performance of GEM detectors in high intensity particle beams

S. Bachmann^a, A. Bressan^a, B. Ketzer^a, M. Deutel^a, L. Ropelewski^a, F. Sauli^{a,*}, A. Bondar^b, A. Buzulutskov^b, L. Shekhtman^b, A. Sokolov^b, A. Tatarinov^b, A. Vasil'ev^b, S. Kappler^c, E. Schulte^d

> ^a CERN, EP Division, 1211 Geneva 23, Switzerland ^b Budker institute of Nuclear Physics, Novosibirsk, Russia ^c University of Karlsruhe, Germany ^d University of Helsinki, Finland

Received 24 October 2000; received in revised form 8 December 2000; accepted 14 December 2000

Fig. 22. Discharge probability per incident particle for the Triple GEM measured at the PSI π M1 beam.

- beam rate: 10⁷-10⁸ п/s (215/325) MeV
- (8 kHz/mm²)
- spark rate independent of particle flux
- significantly increased spark rate for admixture of 63 MeV protons (6 x MIP)

R&D Tasks

H4/RD51 Test Area

 measurement of tracking efficiency with "clean" µ-beam, at least one CBM GEM layer (3 triple GEMs)

CBM GEM Layers

- measurement of spark probability
- measurement of μ tracking efficiency with mixed beam, hadrons shower up in converter (maybe 5-10% chance coincidence of beam μ with hadronic shower) 16

Beam Test Preparation

- Area Layout:
 - floor space for iron converter/absorber
 - beam intensity/ radiation check -> additional area shielding?
 - table/mounts for GEMs
 - geometry survey?
- Desired infrastructure from RD51/H4:
 - Gas distribution
 - DAQ (for VFAT/Turbo board)
 - HV

Rate and Int. Charge: Comparison

	Rate [kHz/cm ²]	Gas Gain	No. of Total Electrons	Charge (10 y) [C/cm ²]
CMS forward tracker (LHC)	~1	~8000	Ar/CO2 (70:30) = Nt (3mm gap) = 31.2 Ar/CO2/CF4 (45:15:40) = Nt (3mm gap) = 31.9	0.01
CMS forward tracker (sLHC)	10-50	~5000	same as above	0.5
CBM typical	1-100	1000	30	<0.15
CBM max (first station)	10000	1000	30	15

 integrated charge/cm² at FAIR-CBM significantly higher than sLHC - ⇒ ageing behavior investigation under intense hadron radiation

18

GSI DetLab Test Setup

- irradiation of (selected) areas of Single Mask-GEM with x-rays (10x kHz/cm2) for several month
- recording of gain (pulseheight, current), gas quality, environmental parameters (T, p,)

Summary

- Positive Reports on RD51/CMS large area single mask GEMs at CBM Much workshop 01/2011 at GSI -> now baseline option for CBM
- GEMs as tracker behind absorbers -> intense hadron (shower-like) environment with slow component
- test setup in with 200 GeV beam in H4 with converter/absorber to simulate typical hadron environment
 - Support from RD51 very MUCH appreciated
- lab setup for stability/ageing measurement (>10 C/10 years integrated charge/cm²)

Team SPS beamtest

• <u>GSI:</u>

- Saikat Biwas, PostDoc
- Chilo Garabatos, senior staff (presently at CERN)
- Uli Frankenfeld, senior staff
- Jörg Hehner, Engineer
- + CBM personnel
- PI Tübingen :
 - Rudi Schmidt, senior staff
 - Jens Wiechula, staff
 - Benedikt Plasa, student

- India:
 - NN
- In collaboration with CERN:
 - Archana Sharma, CMS forward tracker upgrade spokesperson
 - Stefano Colafranceschi, PhD student

····