

Spraying of Glass Plates for the DHCAL

José Repond Argonne National Laboratory

RD51 Meeting, by phone, April 13, 2011

Digital Hadron Calorimeter: DHCAL

Hadron Calorimeter for PFA application

Resistive Plate Chambers as active elements Extremely fine readout segmentation 1 x 1 cm 1 – bit resolution per channel (digital readout) Steel plates as absorber

The DHCAL in numbers

Each layer 96 x 95 cm² 38 layers in the DHCAL + 14 layers in the TCMT (tail catcher) Each layer with 9216 channels Total number of channels 350,208 + 129024 = 479,232

Status

Construction completed

2 successful test beam periods in October 2010 and January 2011 Currently taking data with the CALICE Silicon – Tungsten ECAL placed in front Additional standalone runs in June and possibly later...

RPC design and construction

Design

Standard 2 plate design with glass as resistive plates Readout on anode side

Outside of chamber coated with resistive paint to apply HV

Challenges

Maintain uniform gas gap (\rightarrow precision assembly fixtures) Bring the HV out as far as possible to rim, w/out break downs Provide uniform surface resistivity in the range on $1-5 \text{ M}\Omega/\Box$

 \rightarrow Higher resistivity impacts the rate capability

 \rightarrow Lower resistivity increases the pad multiplicity

Spraying glass

Constraints on resistive paint

Tunable resistivity in the range of $1 - 5 M\Omega/\Box$ Easily applicable Resistivity **not** dependent on humidity (very important!!!)

Paint

Used commercial spray (LICRON) in the past, but new product not useful Identified some 2-component 'artist paint' \rightarrow satisfies constraints Paint needs to be mixed appropriately and sprayed (with spraying gun)

Spraying booth

Built large booth to exhaust (non-toxic) fumes Movement of spraying gun controlled with step motors (~ 2minutes/plate)

Spraying procedure

1-botton operation Could spray up to 8 plates in one day

Results

Uniformity obtained by adjusting

- Speeds
- Distance to glass plate
- Order of spraying
- Air flow in booth

Multiplicity@90%eff Vs. Paint Resistivity on Readout Side

Jose Repond - Spraying of glass plates

Overall values adjusted by

- Adding water to the mixture
- Modifying the ratio of the two components

For DHCAL + TCMT needed

~400 sheets of glass

Efficiency was poor ~ 60%

Environment (pressure, humidity, temperature) was poorly controlled. Better control needed for better reliability

Jose Repond - Spraying of glass plates

RMS related to mean value

102

Mean RMS

Mean

Sigma

1.2 1.4 1.6 1.8 2

10

103

0.2971

0.1792

0.2249

0.6224E-01

RMS/mean

Resistivity [MΩ]

χ²/ndf 51.90 / 11 Constant 38.77

Note: not all plates measured and included

Jose Repond - Spraying of glass plates

7

Jose Repond - Spraying of glass plates